Journal of
Applied Mechanics

Published Bimonthly by The American Society of Mechanical Engineers
VOLUME 69 « NUMBER 2 « MARCH 2002

TECHNICAL PAPERS

97 Surface Instability of an Elastic Thin Film Interacting With a Suspended
Elastic Plate
C.Q.Ru

104 Adherence of a Rectangular Flat Punch Onto a Clamped Plate: Transition
From a Rigid Plate to a Flexible Membrane
K.-T. Wan and J. Duan

110 Adherence of an Axisymmetric Flat Punch Onto a Clamped Circular Plate:
Transition From a Rigid Plate to a Flexible Membrane
K.-T. Wan

117 Multimode Approach to Nonlinear Supersonic Flutter of Imperfect Circular
Cylindrical Shells
M. Amabili and F. Pellicano

130 Stress Field in Finite Width Axisymmetric Wound Rolls
Y. M. Lee and J. A. Wickert

139 An Alternative Decomposition of the Strain Gradient Tensor
H. Jiang, Y. Huang, T. F. Guo, and K. C. Hwang

142 Normal Indentation of Elastic Half-Space With a Rigid Frictionless
Axisymmetric Punch
G. Fu and A. Chandra

148 A Simplified Method to Predict the Steady Cyclic Stress State of Creeping
Structures

K. V. Spiliopoulos

154 A Boundary Element Method Without Internal Cells for Two-Dimensional
and Three-Dimensional Elastoplastic Problems
X.-W. Gao

161 Effective System Properties and Special Density in Random Vibration
With Parametric Excitation

S. Krenk, Y. K. Lin, and F. Ru"dinger

171 Random Response Analysis of Preisach Hysteretic Systems With
Symmetric Weight Distribution
Y. Q. Ni, Z. G. Ying, and J. M. Ko

179 In-Plane Wave Propagation Through Elastic Solids With a Periodic Array
of Rectangular Defects
E. Scarpetta and M. A. Sumbatyan

189 Low Reynolds Number Slip Flow in a Curved Rectangular Duct
C. Y. Wang

BRIEF NOTES

195 Some Properties of J-Integral in Plane Elasticity
Y. Z. Chen and K. Y. Lee

198 Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain
Model
J. E. Bischoff, E. M. Arruda, and K. Grosh

202 2001 Author Index

(Contents continued on inside back cover )

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.




(Contents continued )

Journal of Applied Mechanics Volume 69, Number 2

ANNOUNCEMENTS AND SPECIAL NOTES

208 Information for Authors

209 Preparing and Submitting a Manuscript for Journal Production and Publication
210 Preparation of Graphics for ASME Journal Production and Publication

211 New Reference Format

MARCH 2002



Surface Instability of an Elastic
Thin Film Interacting With a
Suspended Elastic Plate

C. Q Ru This paper studies surface instability of a compliant elastic thin film on a rigid substrate
Department of Mechanical Engineering, interacting with a suspended elastic plate through van der Waals forces. The analysis is
University of Alberta, based on a novel method which permits a simple rational expression for the interaction

Edmonton, AB T6G 2G8, Canada coefficient as a function of the wave number of instability mode. The critical value of the
e-mail: c.ru@ualberta.ca interaction coefficient and the instability mode of the film-plate system can be determined

easily by identifying the minimum of the interaction coefficient within an admissible
range. When the stability strength of the plate is lower than the film even for the shortest
plate-lengths, the interaction coefficient is found to be an increasing function of the wave
number, and thus the film-plate system exhibits a long-wave instability mode determined
by the suspended plate. In all other cases, the interaction coefficient admits an internal
local minimum representing the short-wave mode of the film, and the critical value and
instability mode of the film-plate system are determined by the internal local minimum for
shorter plates, or by the long-wave mode of the plate for longer plates. Some numerical
examples are given to illustrate the resulfROI: 10.1115/1.1445146

1 Introduction whereh is the thickness of the elastic film, afdis its Young'’s
L . L . . modulus. Therefore, the strength of a metallic layer against sur-
Surfac_e mor_phologlcal instability of a thin liquid layer in vari-face instability would be comparable to or even lower than a
ous configurations, due to van der Waals forces or electrostafifhber elastic film if the thickness of the former is a few orders of
interaction, has been the topic of extensive resedfch3]). Very magnitude larger than the latter. In this case, the assumption of
recently, similar issue has been raised for solid thin films. Feigid body is inadequate for the metallic layer, and the system
example, Ghatak et a[4], Monch and Herminghauf5], and should be treated as two interacting elastic bodies. In doing so,
Shenoy and Sharmgs] studied surface instability of a rubberbecause the individual instability modes of two elastic layers of
elastic layer bonded on a rigid substrate and attracted by a rigliiferent thicknesses are different, the incompatibility of the two

; tability modes could crucially affect the critical value and the
plane through van der Waals forces. It is found that the flat surf Ztability mode of the system. Hence, the deformability of the

O.f the compliant e!e}stlc 'ayef pecomes unstable when the 'r.‘ter#teracting body is an issue of practical and theoretical signifi-
tion exceeds a critical valuét is the case when the gap width g ce

between the two surfaces is only a few tens of nanometers — second, in many important cases of two interacting elastic lay-
particular, the wavelength of the surface instability mode is preys one layer is often suspended so that it is traction-free on one
portional to the thickness of the elastic layer, independently of it} jts surfaces and interacts with another elastic layer on a rigid
elastic modulus and the nature of the interaction. This new type Qfipstrate through the other surface. In this case, the attractive
surface instability, governed by a competition between the int§fyces are supported by some geometrical constraints at the edges
action energy and the elastic strain energy of the layer, is purgphich keep the two mutually attracting elastic layers apart, see
elastic in nature and does not rely on the existence of a surfgeg 1 opviously, the instability mode of a suspended elastic layer
compressive prestress. T.hgrefore, it is essentially different fromodeled as an elastic plas substantially different from that of
the known surface instabilities due to surface compressive stregs q|astic layer bonded on a rigid substrate. In fact, the former
([7,8)) or stress-assisted surface diffusig8,10)). A throughout e the huckling mode of a Euler column, is proportional to the
study of this new type of surface instability is relevant for many,qih of the layer, whereas the latter scales with the thickness of
physical phenomena and technical problems at microscopic or " |aver, as mentioned before. Hence, the incompatibility be-
nirgiter scaéle,lsuc_h "ﬁs _s%“d ac(jjheslgbm,lzl), wafer5b1c>nd|ng tween the long-wave mode of the former and the short-wave mode
( " 4), and electrically induced surface g_attelrn(lﬁ@] 16). of the latter could have a crucial effect on surface instability of the
i elrf’ ?’V.O 'Tp?itﬁnt o_p(ta_n |ssuesimgwet;]at¢){ CO";? ml;o équ im-plate system. This offers one of the justifications for the study
lon. FIrst, in all of the existing work{4—€]), the interacting body I9f surface instability of a suspended elastic plate interacting with
(such as a metallic p'f"“?’ of shear modu_lu_s higher than 106 { elastic film on a rigid substrate, as shown in Fig. 1.
has been treated as rigid body because it is much stiffer than ﬁ‘el'he problem depicted by Fig 1 may also be motivated from
rubber elahstlc Ia_ye(gf sh((jaarl mc_)dlilhus less thtan 10 MPSHO\tN' some other problems of current interest. For example, suspended
ever, as shown ifi5,6] and also in the presen paﬁse? ECUON ¢y osshar array of carbon nanotubes, above a thin dielectric layer
5), the critical value for surface instability of an elastic film fixe eposited on a substrate, has been proposed recently as a promis-
on a rigid substrate is determined by its surface complidni&e ing advance towards carf)on nanotube-based electrdiics ).
_ In such a design, suspended nanotubes could deform due to the
) ) N van der Waals interaction with other adjacent nanotubes and the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . . Lo
MECHANICAL ENGINEERSfor publication in the ASME QURNAL oF AppLiEDME-  di€lectric layer([19,20)). Thus, in view of the fact that even small
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 2docal deformation of carbon nanotubes could crucially affect their
t2h001; final rr?ViTm' ijtgber 56 2t00tlr{ Aézt?tciatg E?itfri R. ?-VE\*/ﬁnSfl)n- lgiscustsion etectronic performancg21,27)), the deformation and surface in-
e paper shou e addressed 1o the itor, Prot. Lewis 1. eeler, Departmen, HH H
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and W%Péblhty of SUSpended carbon nanotuk(_emdelgd as. an elaStIC.
be accepted until four months after final publication of the paper itself in the ASMELP OF beamdue to the van der Waals mteractloq V\_”th an elastic
JOURNAL OF APPLIED MECHANICS. layer on a substrate is of greater interest. Here, it is stressed that

Journal of Applied Mechanics Copyright © 2002 by ASME MARCH 2002, Vol. 69 / 97



 (3—4wy) (3—4vy)(L+ )
ST o01—r? T 151-wy)

t2
I e (3=4v))  2((1+v;)(3—4vy)

9= 6a1—%) T 3151-uy)

Wi In particular, the coefficient vanishes when the elastic film is
k’_Nl\ incompressible £=1/2), reflecting the fact that a uniform surface
______ 7 ""A""'"""""WE]—_""T pressure will not cause any normal deflection of an incompress-

hy Ei, Vi ible elastic layer perfectly bonded on a rigid substrate.
A Similarly, for a suspended elastic platits upper surface is
- traction-freg, as shown in Fig. 1, thedownward vertical deflec-
rigid substrate tion V,(x) of its lower surface can be related to the normal stress
o(x) exerted on the lower surface, by a differential relatisae
Fig. 1 Surface instability of an elastic thin film interacting with the Appendix for the detailed derivatipn
a suspended elastic plate

h2 E2, v2

@

h
[1—pHED?+qhiD*—théD®] Ez o=[rh4D*—sHDe+urDe]V, (3)
2

this type of surface instability, which appears on the tensile side whereh, andE, are the thickness of the suspended elastic plate
the bent member, is different than buckling-induced wrinkling cénd its Young’s modulus, angl g, r, s, t, andu are some dimen-
carbon nanotubes under bending due to a compressive stigigdless constants depending on the Poisson’s ratif the sus-
([23,24)). To our best knowledge, this type of surface instabilitpended elastic plate, given by

has not been addressed in the literature, in spite of extensive re-

search on contact mechanics of two elastic bodies in the presence 1 _ 1 t= 2 (= 1
of van der Waals-like force¢[25]) and the related tip-surface -3 971 Y3y T 12(1—v3)’
instability ((26,27).
1 1 @
- S= 50, U= 5
2 Description of the Model 90(1-v3) 126Q1-v3)

Surface instability of an elastic film interacting with a rigidHere, o appearing in(1) and(3) is the same, because the normal
body is analyzed i5,6] with the conventional method of planestress on the lower surface of the suspended plate is equal to the
elasticity. It turns out that the analysis of surface instability of twoormal stress on the surface of the elastic film fixed on a rigid
interacting elastic layers would be quite formidable if such aubstrate. It is noted that E(B) becomes
method is adopted. Here, instead, a novel method based on the h
Kerr-model([28]) of elastic foundations is suggested. As will be 2 y=rh%D*Vv (5)

] = . 2D Vo
seen below, this new method reduces the original plane-strain E,

p.roblem of two @splacement components in two spatial d|me “all higher-order terms are neglected. Evidently, the re@)lis
sions to one of single displacement component in one spatial

. . " BZactIy the classic elastic plate equation under a transverse pres-
mension, and thus allows one to study surface instability of MO re Hence Eq3) is a high-order modified form of Ed5) for a
interacting elastic layers. ' !

SLispended elastic plate under the surface normal stress.

Sinc_e surface instability is characterize_d by the surface norma When two elastic layers are brought into contact, van der Waals
deflection, and the van der Waals interaction only causes a surf &es come into play if the gap width between the 'two surfaces is
normal stress, the analysis of surface instability could be simpT)é-;

. ; - . ry small (say, well below 100 nn{[5])). The van der Waals
fied largely if a relation between the surface normal deflection and araction between the two surfaces produces a surface normal

the surface normal stress could be found. Motivated by this ide&resw((s) whose value at a pointis a function of the distance
we have examined the well-known Wrinkler model for elastl%(x) between the two surfaces at that point. For instance, a simple

foundations and its various refined versidf8—-30). We found : : .
; ! general expression for the van der Waals interaciiof) between
that only the Kerr's mode([28)) perfectly serves this purposir two flat surfaces can be found[if]. Thus, if the deflections of the

instance, Bharatha and Levinson’s mod80]) cannot achieve : : e
this goa). To demonstrate this, let us first consider the low Izizgétw;?;t?hz??safter surface instability, ajet, andw, , w,,
elastic film fixed on a rigid substrate, shown in Fig. 1. As shown '

in the Appendix, the(upward surface deflectiorV,(x) of the Vi=ti+w;, Vo=ty+w,, (6)
elastic film on a rigid substrate can be related to the normal stress
o(x) on its surface by a differential relation thus the surface normal stregsscan be expanded as
[1-ahiD2+bhiD*—ehD®+ghiD®]V, 7(8)= 00T A(5= ),
22 44 66 hy = _Jo
=[c—dh?D?+fhiD*—khSD ]E—lo', (1) o0=0(d), A=—5 . <0,

0
whereD denotes the differential operatdfdx, h, andE, are the AL e
thickness of the elastic film and its Young’s modulus, and, c, S0=A~(titty), 6= 0= = (Wit Wp) )
d, e f, g, andk are some dimensionless constants depending amereA is the undeformed initial gap between the two surfaces,
the Poisson’s ratio; of the elastic film, given by &y is the gap prior to surface instability, anrgd, is the normal
stress prior to surface instability. Here, it is essential that the van

a= L b= (3=4vy) - (1-2vy)(1+vy) der Waals forces are attractive afAe0 ([5]), and the interaction
1-wvy’ 12(1-vy)*’ (1-vy) ' acts like a linear spring of a negative spring constant. Hence, the
(3—4v))(1+vy) surfaces of two interacting elastic bodies would become unstable
d= o TPV Y when the attractive interaction, characterized by the coefficient
3(1-vy) (—A), is sufficiently strong. Evidently, the present
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analysis based on the general interaction ¢&) is valid not only E,[r +shm?+ uh3m*1h3m*
for van der Waals interaction, but also for electrostatic interaction —A= > 66"
between two oppositely charged solid layers. [1+pham?+ghzm™+thom’]
Prior to surface instabilityy; =w,=0 ando = o, and substi- |t can be verified that RHS dfl2) is an increasing function of the
tution of (6) and(7) into (1) and(3) gives wave numbem. If the length of the plate i&, the ratio L)/«
22 4iaa 66 88 must be a positive integer to meet the hinged edge conditions.
[1—ahiD"+bh;D"—ehD”+gh;D"]t; Hence, the minimum of { A) given by (12) is obtained atm
h =a/L. This means that the suspended plate has a half-wave in-
:[C_dtherfh‘l‘D“—kthG]—100, stability mode, just like the buckling mode of a hinged Euler
= column. Further, according to the basic assumption of an elastic
h “plate,” ( h#r/L)? should be smaller than unity. Thus, it turns out
[1-ph2D2+ qhiD*—théD®] . from (4) and(12) that all higher-order coefficientp, g, s, t, andu,
= have a negligible effect on surface instability of a suspended plate,
and the critical value of ghinged suspended plate attracted by a

(12)

=[rhzD*~shD®+uhzDt, ) rigid flat is approximately
whereoy=o(A—(t,+1,)), as defined by7). Assuming that the E2W4hg
deflections of the elastic layers are small compared to the initial —A~ . (13)
gapA ([5,6)), the influence of the spatial nonuniformity of the gap 12(1-wvy)L
do on the coefficientA can be neglected. Thus, throughout the Hence, surface instability of a suspended plate is different from
paper, the coefficiend is assumed to be a constant. a film on a rigid substrate at least in the following three aspects:

To study surface instability of the film-plate system, we shalh) the critical value of A) is inversely proportional td.* for
focus on the existence condition for a nonzero solutien,2).  the former, but independent &ffor the latter;(2) the former has
The governing equations fov; andw, can be obtained from Egs. 4 |ong-wave mode with the wavelength scaling with the length of
(1), (3), and(8), as follows: the plate, while the latter has a short-wave mode with the wave-

22 44 66 88 length scaling with the film thicknes$3) the higher-order terms
[1-ah;D"+bh;D"—emD"+gh,D"w, of Kerr's model are negligible for the instability of a suspended
N plate attracted by a rigid body, but essential for a film on a rigid
= —AE—[c—dh§D2+ fhiD*—khSD®](w;+w,), (9) substratdas illustrated in Section)5In particular, the ratio of the
B critical value for a suspended plate to the critical value for a film
on a rigid substrate is approximately

Az E27T4h1hg El

_ ha 22 44 66 )\_A_%ﬁ, A1=—2.07h—.

=—Ag [1-phiD?+qh;D*—~th3D®](w; +w,) 1 241-vyElL 1
2

(10) In what follows, surface instability of the film-plate system de-
) picted in Fig. 1 is studied, with an emphasis on the role of the
whereA is a constant. Here, because the wavelength of surfaggmpetition between the long-wave mode of the suspended plate

instability is usually much larger than the gap width between thghd the short-wave mode of the film on a rigid substrate.
two surfaces, the effect of the surface energy is sihal6]), and

thus has been neglected. Therefore, surface instability of the film-

plate system occurs when the coupled E§$.and (10) admit a 4 Surface Instability of the Film-Plate System

nonzero solution. As will be seen below, this becomes possible| o ;5 now consider the condition for the existence of a non-
when the interaction coefficient{A) is sufficiently large.

[rh3D*—shSD®+ uh3D8]w,

(14)

zero solution y,,w,). Note that the coefficient{A), as the
loading parameter, appears only on RHS®fand(10) with the

sum (W +ws,). To obtain a simple rational expression for
3 Instability Mode of a Suspended Elastic Plate (—A), let us defineV;=w;+w,, andW,=w,; —w,. Thus, Egs.

. . ! o ‘9) and(10) become
To study surface instability of the film-plate system, it is helpfu

to first understand the individual instability modes of the elastic
film on a rigid substrate and the suspended elastic plate when they

h
2A[1— ph2D%+ghiD*—théD®] E—2W1+[rh;‘D4—sh2D6
are attracted by a rigid flat. Surface instability of an elastic film on 2

a rigid substrate interacting with a rigid flat was studied5y8], +uh8D8IW, =[rh4D*—shSD®+uhSD®W,,
where it was shown that the critical value of A) is proportional h
to the surface compliand® E of the film, and the wavelength of [1—ah§D2+bh‘l‘D4—eh?D6+gh§D8]W1+2A—l

the instability mode scales with the film thickness, independently
of the length of the film. In particular, when the film on a rigid 22 dima 66
substrate is incompressiblev,(=1/2), the critical value of X[c=dhiD?+fh;D"—kh;D"]Wy
(—A), denoted by ¢ A,), is about 2.0E,/h; ([5,6]). = [1—ah2D2+bh*D*— ehfD®+ ghtD®

For a suspended elastic plate attracted by a rigid plane, the [1=ahiD"+bh;D7—enD +ghDIIW,. (15)
governing equation can be obtained by takibg=> andw,;=0 Let W;=Xsin(mx) and W,=Y sin(mX, whereX andY are two
in (9) and(10). Thus, Eq.(10) gives undetermined constants amd is a wave number. Substituting

these expressions intd5) yields

E,

—A[l—ph2D2+qh4D4—th5D6]Ew h, h,
2 2 U 2AS2X+TX=TY, LX+2A—-RX=-LY, (16)

44 66 818 E, E1
=[rh3D*—sh;D°+uh;D®Jws,. (12) where
Let us consi(_JIer a hinged plgtas shown in Fig. land assume S=[1+pa?Z+qa*Z2+ta’Z°%],
that w,(x) =sin(mx), wherem is a wave number. It follows from
(12) that T=[ra*Z?+sa®Z%+ua®z4],
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L=[1+azZ+ bZ2+eZ3+ gZ4], R=[c+dZ+ f724 kZ3], _Table 1 Speci‘allvalue of Z below which (18) is lower than its
internal local minimum

h
z=hm?, “Z=a. 17) =02 =01 =001 =000l  =0.0001

h
! a=10 0.03 0.018 0.0047 0.0015 0.00048
Since the existence of a nonzero solution (w,) is equivalentto «=100 0.0003 0.00018 0.00005 15x10°°5 4.8x10°©
the existence of a nonzero solutiow{,W,), the condition for
surface instability is given by the existence condition for a non-
zero solution(X,Y). In doing so, a simple rational expression is

derived from(16) for the interaction coefficier as higher-order terms of the Kerr modél) for a film on a rigid
h, LT substrate play an indispensable role in the surface instability of the
A= (18) film.
E; BSLHRT Now, let us examine surface instability of the film-plate system.
where Since the effect of Poisson’s ratio is less important for both the
suspended platesee(4)) and the film on a rigid substratgs,6)),
h, we shall neglect the Piosson’s ratio of the suspended elastic plate
E_2 (thusv,=0), and assume that the elastic film on a rigid substrate
B= - is incompressible i, = 1/2).
E, Case [: Stiff Thick Plates. First, let us examine the case

. . ) when the suspended plate is much stiffer and also thicker than the
It is verified that RHS of(18) approaches zero monotonlcallycomp“am film on a rigid substrate. For instance, det 10 and

whenZtends to zero. . B=0.2, 0.1, 0.01, 0.001, and 0.0001, respectively. In these cases,
If the suspended plate is hinged at its edges, we have it is found that(18) has an internal local minimum, valued around
nw 2.05 to 2.06, within a very narrow rangée[4.7,4.9. Appar-
m= T n=123.... (19) ently, this minimum corresponds to the critical value and instabil-

ity mode of the film on a rigid substrate given 81). On the
Therefore, the critical value of{A) and the instability mode of other hand, becausé8) approaches zero monotonically wh&n
the film-plate system can be determined easily by identifying tHends to zero, there is a special valueZzobelow which(18) is
minimum of (18) and the associated value &funder the con- lower than its internal local minimum. The dependencyof
straint(19). In particular, it follows from(19) the admissible val- this special value of are shown in Table 1 fox=10. Hence, if
ues ofZ are bounded from below by the condition RHS of (20) is larger than this special value, the admissible mini-
mum of (18) restricted by(20) is provided by the internal local
minimum. In this case, the critical value and the instability mode
of the system are determined by the internal local minimum or, in
L . . other words, by the elastic film. On the other hand, if RH$2)
Thus, the limit cas&=0 is excluded by conditioi20). In what js smajler than the special value listed in Table 1, the admissible
follows, surface instability of the film-plate system is studied by,inimum of (18) is provided by the smallest admissible wave-
|dent|fy|ng the minimum of(18) within the range bounded by ., mber given by20) because whose corresponding valugd
(20). Obviously, the lengthL of the suspended plate enters thgs smajler than the internal local minimum. In this case, the criti-
problem through conditioi20). cal value and the instability mode of the system are determined by
the suspended plate. Note that RHS(20) is inversely propor-
tional to L2, the above results indicate that the critical value and
5 Results and Discussions the instability mode of the film-plate system are determined by the

) . film when the plate is sufficiently short, or by the suspended plate
First, to demonstrate the efficiency of the present method, let {$en the plate is sufficiently long.

consider the case when the upper plate is rigid and £w8. In - This conclusion has a simple interpretation. In fact, the special
this case, Eq(18) gives values listed in Table 1 are defined by the condition that the criti-
h, L(Z) cal value of the plate is equal to the critical value of the fitimat

—AlE—l “R2) (21) is,A=1). Thus, this special value & can be estimated by com-

T 2
Z:(mhl)zz(%) . (20)

bining A =1 with the lower bound of20), which yields

For example, when the elastic film is incompressible= 1/2), it 5\/E

can be verified easily that RHS ¢21) has a unique minimum Z~—. (22)
which is about 2.063 and attained anly)?>=4.8. Thus, the cor- a

responding critical value of{ Ah; /.,) is about 6.19wherewis  Thjs result is applicable only when RHS (#2) is smaller than
the shear modulus and thiis=3u when v=1/2), which is at-  ynjty, as required by the conditiq@0). In particular, formulg22)
tained ah,m=2.19. These results are in excellent agreement Wileicts that this special value is inversely proportionak?o To

the values ¢ Ah/u)=6.22 andhm=2.12, obtained by the con- confirm this, this special value & is calculated fore=100 and
ventional method(5,6]). The present method and the res@1) jisteq in Table 1. The results of Table 1 confirm that this special
are much simpler than the conventional method. In particular, tf)g o ofz is inversely proportional ta2. Finally, it is stated that,

present method is applicable to both incompressible and COMB; all cases listed in Table 1, the parameterand B satisfy the

(—Ah/ ) predicted by the present method will be about 7, with Case II: Stiff Thin Plates. It is noted that the stability
(mh)=1.7. Further, if the lowest-order Kerr model wig=f strength of the suspended plate is proportional to the cube of its
=g=k=0 is used, the predicted critical value of Ah/x) by thicknessh,, while the stability strength of the film on a rigid
the present method will be about 9, wittim=1.3. Therefore, in substrate is inversely proportional to its thicknégs Thus, it is
contrast to a suspended plate attracted by a rigid flat for which thgpected that surface instability of the film-plate system relies
higher-order terms of the Kerr's mod@) have a negligible effect heavily on the thickness-rati@. Hence, another case of physical
on the critical value and instability modeee Section 3 the interest is when the stiff plate is thin compared to the film. First,
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Table 2 Special value of Z below which (18) is lower than its (-Ah /E )1/6
internal local minimum  (when an internal local minimum of  (18) 111

does not exist, as indicated by “ *,” the special values of Z 18
collected here are those below which ~ (18) is lower than 2.06 ) 1'6_
’ -10 i
B=0.0001 =0.00001 =0.000001 =0.0000001 =0.00000001 1.4 p=10 B:lOE 1%
a=1 0.05 0.015 0.005 0.0015 0.0005 1.2 _
a=0.1 13 6* 0.8 0.17 0.048 13
0.8 B=10-4
0.64
let us consider the cases=1 andBe[10 8,10 4]. It is found 0.4
that (18) still has an internal local minimum, valued around 2.05 0.2
to 2.1, within a narrow rangé €[4.0,4.8. Apparently, this inter- Z1/6
nal local minimum corresponds to the critical value and instability 0 0.5 1 15 2 2.5 3

mode of the film on a rigid substrate given (841). On the other _ ) i - ) )
hand, becausél8) approaches zero whehtends to zero, there is Fi9- 3 The interaction coefficient determined by  (18) for thin

a special value oZ below which(18) is lower than the internal ZEL?Snchghof gn_ igigfngﬁggalsmﬁnhhrﬁ gfe pena%r;cy on B ofthe
local minimum. The dependency ghof this special value oZ is

shown in Table 2 fora=1. It is verified that the special values

listed in Table 2 fora=1 can also be estimated approximately by o .

formula (22). all of the cases shown in Figs. 4 and(%8) has an internal local

Furthermore, let us consider the plates even thinner than tfgnimum, and thus the critical value and instability mode of the
film. For example, let us consider=0.1 andBe[107,107%]. film-plate system are determined by the minor of the internal local

Two new phenomena are observed for 0.00001. First, in these minimum and the value of18) at t_he ad_m_issible lower bound
casesla=0.1 andB>0.00003, the special values d listed in (20). When'the length of the pla}te is suff|C|entIy_ s_hort, the lower
Table 2, below which(18) is lower than 2.05, are no |0ngerbound(20) is so large that the internal local minimum is lower
smaller than unity. Second, it is found tha8) becomes a mono- than the value of18) at the lower bound. Thus, the film-plate
tonic function ofZ even for larger values & and no longer has system exhibits the short-yvave instability mode of Fhe fllr.n.. This
an internal local minimum. The interpretation is simple: The pla@€ans that not only the film, but also the plate, will exhibit the
is so thin that its stability strength is always lower than that of theort-wave instability mode. On the other hand, if the plate is
film even when the length of the plate is just few times the plate
thickness. In this case, an internal local minimum(b8) is ab-
sent, reflecting the fact that the film-plate system always exhibits(_Ah /E )1/6
the long-wave instability mode of the suspended thin plate and the =
short-wave instability mode of the film will not play any role. $=0.1

To demonstrate these results clearly, let us plot the sixth root of %]
expression(18) as a function ofZ® over a relevant range for B=1
several typical cases. First, let us consider thinner plates aith 3
=0.5 anda=0.05, respectively. The sixth root of expressias) B=10
is plotted againsZ*®in Figs. 2 and 3 for various values gf It is =100
seen that, for giveny, (18) has an internal local minimum for 2] -
smaller values of, but the internal local minimum disappears for
relatively larger values oB. The biggest value g8 which admits
an internal local minimum of18) can be estimated roughly by
setting RHS of(22) equal to unity. 6

This phenomenon does disappear for very thick plates. For ex- 5 o5 : 2 3 23 3 Z
ample, let us consider thicker plates wila=1000 and « ’ ’ )
=10,000, respectively. The sixth root of expressitiB) is Fig. 4 The interaction coefficient determined by  (18) for thick
sketched in Figs. 4 and 5 agair&t® for various values of3. In  plates with a=21000 which indicates the existence of an internal

local minimum of (18)

(-Ah,/E))" (-Ah,/E )"
s 3.5t B=0.01
L6} 3 p=0.1
1.4] 1N B:lOi 3 1
o B=10 p=10 25 B=1
1 4 =]
0.8 —1072 1.51 B 0
p=10
0.6] 4
0.4]
0.2] e °3 146
0 05 1 15 2 25 y Z 0 05 1 G 2 25 3 z

Fig. 2 The interaction coefficient determined by (18) for thin Fig. 5 The interaction coefficient determined by (18) for thick
plates with @=0.5 which shows the dependency on B of the  plates with @=10,000 which indicates the existence of an inter-
existence of an internal local minimum of (18) nal local minimum of (18)

Journal of Applied Mechanics MARCH 2002, Vol. 69 / 101



sufficiently long, the lower boun(®0) is so small that the internal

local minimum is higher than the value @f8) at the lower bound. Eu,=(1— )
In this case, the film-plate system exhibits the long-wave mode of

the suspended plate. Thus, not only the plate, but also the film,

1
D cogzD)Xy+sin(zD) X, + Bcos(zD)Xz

1
will exhibit the long-wave instability mode of the plate. + Fsin(z D)X3|—(1+v)||cogzD)+ zzDsin(z D) | X}
. 3 1 z .
6 Conclusions +| 5 SiN(zD) — 5 zcogzD) X1+ ﬁsm(zD)Xg
This paper gives a study of surface instability of an elastic film
fixed on a rigid substrate interacting with a suspended elastic 1|sin(zD) z ,
plate. The analysis is based on a novel method much simpler than ~ + 5| —pz—— pz¢0%2D) X3/,

the conventional method used for surface instability of an elastic
film interacting with a rigid body(5,6]). The efficiency and ac-
curacy of the present method is demonstrated by excellent agree- Eu,=(1-1?)
ment between the predicted results and the known data for a spe-

cial case. The present results show that the competition between 1 1
the long-wave mode of the suspended plate and the short-wave + —5sin(zD)X5,— —Scos(zD)Xé}
mode of the film plays a crucial role in surface instability of the D D

film-plate system. In particular, it is found that

(1) when RHS 0f(22), determined by the geometrical and ma- —(1+w)X
terial parameters of the film-plate system, is larger than or close to
unity, the stability strength of the suspended plate is lower than

1
sin(zD)X{— Bcos{zD)Xi

%[zD2 cogzD) D sin(zD)]X,

1
the film on a rigid substrate even for the shortest plate-lengths. In +| cogzD)+ §ZD5'“(ZD) X1
this case, the interaction coefficient given (1) has no internal
local minimum, and thus the film-plate system exhibits the long- 1|sin(zD) z
wave instability mode of the suspended plate determined by the 5|7 TZcoszD) X+ 55 sin(zD)Xs

lower bound(20).

(2) when RHS of(22) is smaller than unity, the interaction whereu, andu, are the displacements along tkeand z-axes,
coefficient given by(18) has an internal local minimum representrespectively,z is the upward vertical coordinate measured from
ing the short-wave mode of the film on a rigid substrate. Thus, thige surface of the elastic lay€, and v are the Young’s modulus
critical value and instability mode of the film-plate system argnd Poisson ratio of the elastic laye,(x) (i=0, 1, 2, 3 are
determined by the film if the plate is short enough, or by thgome unknown functions of and “/” denoted their derivatives.
suspended plate if the plate is long enough. First, for a suspended elastic layer subjected to a normal stress on

one of its surfaces, the boundary conditions on the surfazes (
=0) and ¢=—h) are
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Thus, we have the following five conditions:
Appendix

The method suggested here is based on a relation between the Xi(x)=0,
surface normal deflection and the surface normal stress of an elas-
tic layer (see(1),(2) or (3),(4) in the tex}. Such a relation is given

by Kerr [28] for an elastic layer resting on a frictionless rigid
substrate. Here, Kerr's method is used to derive a similar relation

for an elastic layer fixed on a rigid substrate, or a suspended 1

1
E[—hD2 coghD)+D sin(hD)]X}

—hcoghD)— %sin(hD)}Xé

elastic layer. To demonstrate this, let us begin with Kerr’'s expres- +§

sions for the tangential stress, vertical normal stress, and two dis-

placement components under plane-strain n } E sin(hD)X4=0
2D s

1
Oyy=— E[ZDZ cogzD)—D sin(zD)]X}

1
coghD)+ 5 hD sin(hD)}xg

X3

1
cogzD)+ EzDsir‘(zD)

h H "
+ ESIF\(hD)XZ

! Dl'DX’lz'DX’
3 zcogz )+Bsm(z ) Z_EBSIH(Z VX3,

1
2)

sinthD) h .
D7 —Fcos(hD) X3=0,

1
cogzD)+ EzDsin(zD)

— 4
Oz27= X0
Xp=0,

+

3 H 1 n Z H n
Esm(zD)— EZ cogzD)|X]+ ﬁsm(zD)X2

1
—(1—v2)§X§=EW.
1|sin(zD)

+ E T— ﬁCOSZD) Xg,

One can eliminat&,, X;, andX; and obtain the two relations
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J. Duan A linear elastic solution is proposed for the adhesion/delamination of a constrained thin

film adhered to a rectangular flat punch. As the punch is pulled away by an external load,
the film deforms and gradually delaminates until a line contact is left prior to complete
separation. This is in sharp contrast with the finite pull-off contact radius as predicted by
the classical Johnson-Kendall-Roberts theory for adhesion between solid bodies. In order
to portray the transition from a platelike to a membranelike behavior, the film thickness
and stiffness are allowed to span a wide range of values. Simple experiments demon-
strated the validity of the theory[DOI: 10.1115/1.1303824

School of Mechanical and
Production Engineering,
Nanyang Technology University,
Nanyang Avenue,

Singapore 639798

1 Introduction 2 Theory

Thin film adhesion is an important subject in many fields. For Figure 1 shows a thin isotropic film with unit width, thickness,
instances, in microelectronics, good adhesion is required betwderelastic modulusg, Poisson’s ratioy, and flexural rigidityD
encapsulating polymer films on silicon chip to enhance mechami-Eh*12(1-»?), being adhered onto a rigid substrate with a
cal reliability, and in biological sciences, cell locomotion requiregem""r‘g“l"jlr opening of lengtl]. A rectangular flat punch is then

reasonable adhesion between thin cell membrane and substratﬁWlled away from the membrar_le by an gxternal dgdso that _the
and agglomeration/division of cells involves cell-cell adhesio ntact area of lengtizc, diminishes until complete separation at
99 he film-substrate interace. The free hanging film on either side of

decohesion. .It is therefqre essential to formulgte the adhesive cgis contact, with an initial length ¢ c), is strained by a uniform

tact mechanics for bodies enclosed by thin films. uniaxial membrane stress df along the midplane of the films.
Hertz [1] and Boussines@2] introduced the classical contactThe debonding angle, a measure of the inclination of the film to

mechanics for a convex solid body indenting on a continuum suthe plate, is assumed to be small hereafter. Note that this angle is

strate. Johnson et dB3] later extended the work to include adhe-determined by the geometry andimslependenof the film thick-

sion at the contact and derived the now-celebrated Johnstess. For simplicity, viscoelasticity of the polymer film is not

Kendall-Roberts (JKR) theory. Kendall [4] formulated the Cconsidered in the present model. It is assumed that only the free-

adhesive contact mechanics of a circular flat punch in contact wiRn9ing regions=< (I —c) andx=(l +c) experience bending and
an elastic half-space, which was later modified by Maiifisto  Stretching while the contact regioh{ c) <x<(I +c) is free from
include different pun,ch geometries. Contact mechanics for thi echanical stresses. We will first consider the elastic deformation

films has attracted much attention lately. Plaut et al. studied t t_he film as a consequence of the ext_ernal load withc_>ut delami-
) ) I C o Sition, before proceeding to the delamination mechanics.

deflection and buckling of a bent elastica in contact with a flat
surface([6]). Wan considered the adherence between an axisym-2.1 Constitutive Relation Without Delamination. The
metric punch and a thin flexible fili7]). In this paper, we focus Profile w(x) of the free hanging film is governed by linear elas-
on a new configuration: the adhesion between a rectangular Hi§tty ((8.9))
punch and a thin film constrained at two opposite edsle the 2

. - d°w NXx
other two ends remain frgeThe punch is gradually pulled away D— =Nw— ——M, (1)
from the film and thus driving a delamination into the punch-film dx? 2
interface. The film is allowed to span a wide range of thicknes
and mechanical compliance, rather than being confined to
classical limits of either a plate under pure bending or a mem-
brane under pure stretching. The new elastic model is derived d?w
based on a simple energy balance and linear elasticity. Experi- ——BPo=—pé—m, (2)
ments with an interface made by adhering a commercially avail-

able pressure-sensitive tape onto an aluminum punch serve tayjith a set of dimensionless quantities defined as follows:
lustrate the theory.

shereM(J is the bending moment at=0. Equation(1) be rewrit-
as

X W, ¢ ~ Mgl?
[ T MR

h’ |’
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Fig. 1 A rectangular punch adhered onto a thin film con-
strained at two opposite ends
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Fig. 2 Constitutive relations for various A without delamina-
tion (solid lines ) and the limiting cases of pure bending and
stretching (dotted lines ). The gradient n=1 in the bending
dominant region and becomes 3 in the stretching dominant re-
gion. An intermediate transition zone with 1 ~ =<n=a3 lies between
0.1<wy=<10.

d(log ¢)

profile approaches zero gradients at the contact edges because of d(log wo)
nonzero bending. There are therefore three boundary conditions: =[B\—2 tank B\/2)]

(dw/d€)=0 at £&=0 and &=\ 4)
w=0 at ¢&=0 ®)
Solving (2) exactly,
-1
w=;[—sinh(ﬂ§)+ O costige)— 11+ g
(6)
The displacement traveled by the punch is given by
[coshBN)—117
w0=w|§_h=%[w—smﬁﬂ)\)+ﬁ)\ . ©)
The average membrane stress is giver([By9]*)
N Eh f‘cl(dw)z o
_)\l(lfv2 o 21dx X ©
Substituting(6) into (8), the normalized load takes the form of
B? cosh B\/2)
== : 12 9)
J6 - cosr(,B)\)_ 3sinh(B\)
2 28\

The constitutive relationrp(wy) can be found analytically for a
fixed N by eliminatingB from (7) and(9). The exact expression is
not given here though it can be obtained by software such

MATHEMATICA and will cover a number of pages. We choose to

showe(wg) in Fig. 2 as a parametric plot for various values\of

using B as the varying parameter. The limiting cases of plate and
membrane are shown as dashed lines. As we suggested earlier

(9], @(1o) can be written agxwy, wheren is defined to be

1n article 2 of referencg8], the membrane stress is computed for the cylindrical

bending of uniformly loaded rectangular plates with simply supported ed@ge$5)
in [8]). The same expression is valid in the present model.

Journal of Applied Mechanics

368\ cosh{BN/2)+6(BN cosi3BN/2)
+(28°\?—21)sinh( BN /2) — 21 sin 38\ /2)
(48°\2—6)cosh BN/2) + (2 3°\2+ 6)cosH 38\ /2)
+ (38N +283\3)sinh( BN /2) — 98\ sinh(3BN/2)

(10)
such that & n=3, with the lower and upper limits corresponding
to platelike and membranelike behavior, respectively.

For a thick and stiff plategp(&) is derived by putting3=0 in (2)
and integrating with respect tbtwice while keeping4) and (5).
Thus, (6) and(7) become

® )\52 53 )\XZ X3
w= E(T— 3 or w=6w, F— ﬁ (11)
2% FIS\®
w0=§ or Wozm, (12)

respectively, identical to the classical elastic soluti$8,9]).
Equation(12) implies thatn=1 ande > w, as expected classically.
Here the punch displacement is small compared to the film thick-
ness wy<1) and bending is dominant. As for a thin and flexible
membrane, substitution g8— reduces(9) to ¢=8%/6'2 and

(6) and(7) become

as w=(%)§ or w= \%x (13)
6 Eh | w3
:(F>w8 or F:(l—vz)()\_?) , (14)

respectively. Alternatively(13) and (14) can also be obtained by
putting B—o< in (2) and ignoring both ¢2w/d¢?) andm,. Equa-
'Fion (14) implies thatn=3 and<p0<w§ ([9,10]). Here wy is large
(wo>1) and stretching prevails over bending. Note ttl) to
(14) are consistent with the V-peel configuration where the exter-
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nal load is applied in a central line and=1 [9,11]. The film is 104 . . . . . <

now so flexible that virtually no bending moment exists even at v“'\ ) }"" ,?? ,P? ~

the contact edges, resulting in a nonzero debonding angle that A 7T

violates the boundary conditiod) in the limit. B = AR — 1" = 10
There is one shortcoming of the above theory. When the entire 103 £ ) =/ /9 4

punch surface is in contact with the filtn=0), there is no free- \———__
hanging film to store up the elastic energy. There are two seem- — —
ingly nonphysical consequence$) a singular local membrane
stressB and (i) an infinite ¢ to maintain equilibrium. The ambi- S 10 \— i
guity can be removed by placing the root of rotation at the contact LA~ ——

interface, instead of the midplane of the fill2]). The local ' /
stress will then become a function of distance from the contact A
corner and will be governed by the stress intensity fagtbs]), a 10! F
subject that is beyond the scope of this paper. The severity of the

problem is relaxed when the punch is narrower than the film span, >
i.e., the initial\ is nonzero.

2.2 Constitutive Relation With Delamination. When the 10° _
punch displacement exceeds a certain threshold, delamination
drives into the interface from the two opposite edges shrinking the 0
contact area by 26N. The mechanical energy release réie

5 ) : . ; .
J.m%), G, under a fixed load configuratidnonstanf) is defined Fig. 3 Constitutive relations for various N with delamination

to be ([13)) (dark solid lines ) and without delamination ~ (gray lines ). The
14U dotted lines represent the bending and stretching limits. As
_ = dUc (15) delamination propagates, the curve ABCDE cuts through all
211 aN gray curves of different  \. The theoretical pure bending (mono-
tonic decreasing ) and pure stretching (horizontal ) limits are
where the complementary energy is shown as dashed lines.
U dF n F 16
= | WodF =7 Fwo (16)

Consider the case whel& =10* (curve ABCDB. Starting with
point A(\=0), delamination propagates into the interface as the
punch moves upwards. Along section AB, the film behaves as a
Jo 1 plate until pint B(A=0.1) where it begins to deviate. The section
qp(_o) == . (17) BCD denotes a bending to stretching transition and comprises a
2 o 2 B? local minimum. From C to E, the delamination becomes progres-
I ) . sively more membranelike and the slope gradually tends to zero.
At equilibrium, G=1y with y the adl*wesmn er;ezg)ilof the pquh'A line contact(\=1) is finally reached at E, before a complete
film interface, or, equivalentiyl’=I"*=y(Dh/I") *. Eachl™  getachment of the punch from the film, or a “pull-off. Another
is therefore determined by a pair Bfand\. The g-\ plot can be example is noted fol™* =10 (curve AB’C’). Beginning from
conformally mapped into @-w, space usind7) and (9).?> Note A=0, the delamination passes through A=0.4), then B (A
that an analytical expression féi(¢,w) is possible, but a nu- —q ) and finally reaches pull-off at’‘Qx=1). The film behaves
merical approach is sought. o ] like a plate throughout the delamination process, with virtually no
In the limiting case of a plate, substituting2) into (16) and {ace of stretching. Thus for all* below 10, the film is essen-
(15), or simply puttings—0 into (17), four equivalent EXPressions ia|ly platelike ande(w,) is always monotonically decreasing. It
can be derived: is interesting to note that=1 at “pull-off” always. Figure 4
3/ pwy| 1 w(z) 9|13 shows the c_ritical _force;*_and pun_ch displacem_ew_tg_ at pull-off
= _(_) = §(‘D)‘)2: 18— = (_) (e?wg)?®. (18) as monotonically increasing functions16t. The limiting pull-off

using the relationpxwgy. Defining a normalized quantity’
=G(Dh?1% ™1, substitution of(7) and(16) into (15) yields
1 tantf( BA/2)

FZE

n

1+n

n
1+n

2

21 A A4 132 parameters are such that for a plate8) requires
At equilibrium (I=T*), wyx\? and = w, Y2, so that as the 8E 12
punch displacement increases, delamination grows and the applied Ff= _%=Y h3/2 (20)
force diminishes from a maximum. In the limit of=1, T 312(1-17)
=G(Fwg/2\1) "1=3/2, which is consistent with a V-peel test un-
der pure bending[19]). Similarly, in a membrane, substitution of o (2= 1
(14) into (16) and (15) yields Wo=|""3g | 13 (21)
3wy g\ a3 9 wo\* .
=7l x )— 28 ¢ —2( }\) . (19) and for a membrang19) requires
e . L 3 |14

At equilibrium, ¢ remains constant regardless of the delamination Eie S1Ey U4 29
length. In the limit ofA=1, T'=G(Fwy/2\l)~1=3/4, which is 21— (22)
consistent with a V-peel test under pure stretch|8g14]) and the
classical “pull-off” test ([11]). 8l14y(1-12)] 1

Figure 3 shows the constitutive relatigi{w,) for variousT™ WT_[Y— - (23)
(solid line9, and the plate and membrane limiigashed lines 0 3E hi/4

2For a chosen value df, 8 can be found numerically for a fixed With suchg, 3In the literature, “pull-off” usually refers to the event of complete separation
a pair ofp andwg are found. The entire functiop(w,) can thus be traced for a fixed under afixed loadconfiguration. In this paper, we adopt a loose definition to include

I" by iterating a range oX. both fixed load and fixed grips.
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Fig. 4 The normalized critical force ' and normalized punch <«
displacement @] at “pull-off” as functions of a normalized ad-
hesion strength TI'*, along with the pure bending and pure
stretching limits  (dashed lines ).
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{)
Thus,F is always a monotonically increasing functiontofvhile %}
wg is monotonically decreasing. 02 o 4
<O
. O
3 Experiment O

The aim of the following experiment was to demonstrate th 0.1 |- Mﬁz@ .
delamination mechanics, rather than to measure the interface

ergy. As a simple illustration, a model interface was constructe
by adhering a commercially available pressure-sensitive adhes 0.0 | | ! OO
(PSA) tape onto an aluminum plate/punch. PSA was used becat “0.0 0.2 04 0.6 0.8 1.0
of the ease in sample preparation. Some remarks are worth noti
First it is well known that the actual interface energy of a PSAi_
small compared to the interfacial resistance against delamination )
growth ([15,16)). In the following experiments and analysig(or ~19- 5 Typical data of F(wg) for (&) cross-head speed of 1
T*) refers to the latter rather than the former. Secondly, the taf":min — and 1 (solid curve ), 2 (dashed curve ) and 3 (dotted
was a “composite” with a backing polymer sheet coated with 5ov¢) 1yers Or film, ) (b) single layer at Cross‘zesd speed of 1t
thin adhesive layer. However, since the elastic energy was sto%ﬁ]ig]s"; anc(iCI(f)(essin)'le gngf];?cmg?#;zss)’;nd Ome';“:“n (r_|-1
mainly in the polymer film instead of the adhesive, and that tr}grga weak interfaceg Notz the change of scgle in () '
interlayer adhesion in a multilayer filfsee laterwas much stron- ' '
ger than the punch-film interface, the composite characteristics
was ignored. I ) -

A model interface was fabricated as follo&ig. 1). A rectan- Mm.min =, ano!(c) single layer at =1 mm.min * for the weak
gular opening50 mmX 65 mm was machined into an aluminum interface. In Figs. &) and 3b), as the punch moved awafy,

; ; increased before reaching a plateau. The fluctuatidn \was the
pI%te(lr(])é) gg)m;: t1h5okm"_‘tl‘:’]‘”dr]6 lmn:_thrlr?ké-\ ?t'Ck%t?&i%SMrgm result of surface roughness, air pockets inevitably trapped at the
wide a um tNicK, with an elastic moaulus o @ interface, antielastic geometry of the crack front, and stick-slip

and Poisson’s ratio of 0.3, was then adhered to the back of gnavior during crack propagation. The plateau force was larger in
substrate. A polished flat aluminum pune#9.2 mmXx 52 mm  case of a thicker film, but was essentially independent of the
was brought into adhesive contact with the film via the rectangulerfoss-head speed. The minor difference due to different speeds
opening. The small ratio of the film width to the substrate openirgpuld be the consequence of viscoelastic behavior of the polymer
(1:10 was intentional so as to minimize the effects due to th@m. The strong interface led to @) andI'™* in the order of 100
anticlastic geometry of the front. The punch was then pulled awgyq 16, respectively, which was well within the stretching domi-
vertically from the film in a fixed grips configuration at cross-headant region and the membrane limit is sufficient to account for the
speeds ob =1, 2, and 5 mm.min". A universal testing machine delamination proces&.f. (19)). On the other hand, in Fig.(§),
recorded the load a as a function of the punch displacement. Ekelamination in the weak interface showed a comparatively large
periments were repeated for multilayer films to investigate thmitial F that decreased gradually towards a plateau prior to pull
effects due to changes in thickness. The adhesive strength wés Here w, and I'* were in the order of 1Dand 16, respec-
measured by a standard 90 deg peel test tgb60+10 J.m 2  tively, which fell in the bending-stretching transition where an
For comparison purposes, a “weak” interface with an adhesidhitial decrease in external load was expected. _
strength much less than 60 J.fawas fabricated by spraying A pull-off event with a line contact was observed in a!rl mea-
the adhesive side of the film with mould release agent befoséirements. Figures® and @b) show the measure’ andw; as
adhesion. functions of film thickness, respectively. It was apparent that both
Typical data ofF (w,) are shown in Fig. 5 fofa) 1, 2, and 3 F' and Wg were independent of the cross-head speed and at
layers atv=1 mm.min%, (b) single layer atv=1, 2 and 5 thicker film led to a loweF" andahighewg. Theoretical curves

Punch displacement w, (mm)
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cell locomotion or external forcege.g., osmotic pressur€ 17]).
Here the roles played by the film and the punch are juxtaposed, in
that, the puncHor substratumis now stationary while the mem-
branous cell in motion moves into and out of contact. When a cell
comes into adhesive contact with a rigid substrate, the cell wall
“stretches” itself in the noncontact area and “bends” towards the
contact circle. Bruinsma[18], Albersdafer et al. [19], and
Kloboucek et al[20] discussed such observation and showed that
the cell profile immediately outside the contact circle was given

by
A X
w(x)=(R—)(x—)\ 1—ex;{—x) ) (24)

with \ the capillary length an&, the radius of curvature. In close
scrutiny, (24) is consistent with and in fact equivalent(®. Both

(6) and (24) comprise a linear term corresponding to stretching
and an exponential terifneplacing all hyperbolic functions i(6)

by exponentidl due to bending. It is important to note that the
theoretical profile is correct only in a one-dimensional rectangular
contact but may not be applicable to a two-dimensional axisym-
metric situation(e.g., a spherical capsuleln fact, we showed
earlier that the contact mechanics is quite different in a case of a
circular punch on a thin flexible constrained filfiY]).

Pull-off Force F' (N)

5 Conclusion

We have derived the adhesive contact mechanics of a rectangu-
lar flat punch on a constrained film, which was demonstrated by
the simple experiment of sticky tapes adhered onto an aluminum
substrate. A pull-off event is expected when the contact area
shrinks down to a line and the external force reaches a critical
threshold. This new model should be used in adherence between a

Number of layers n thin film and a solid, instead of the classical punch-elastic half-
space theory. Our new model is expected to have implications in
Fig. 6 (&) The measured pull-off force F' and (b) pull-off  thin-walled biological capsules.
punch displacement Wg as a function of number of film layers
in log-log plots for cross head speeds of 1 mm.min ~1 (circles ),

Pull-off Displacement wOT (mm)

2 m.min 7! (triangles ) and 5 mm.min ~! (squares ). The theoreti- Acknowledgment
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Adherence of an Axisymmetric

Flat Punch Onto a Clamped

Circular Plate: Transition From a
o Wan & Rigid Plate to a Flexible

Science and Mechanics,
Virginia Polytechnic Institute IVI e m b ra n e
and State University,

Norris Hall 106, Mail Code 0219,
Blacksburg, VA 24061 A clamped circular film is adhered to a rigid cylindrical punch. An external force pulls

e-mail: kwan@vt edu the punch away causing delamination at the punch-plate interface. The deflections
of the film are discussed for a range of film thickness and stiffness, detailing the continu-
ous transition from a plate under bending to a membrane under stretching. An equilib-
rium theory of delamination mechanics is derived based on an energy balance. A
complete separation at the punch-film interface, or the “pull-off” event, is predicted
when the contact circle shrinks to approximately 0.18 of the film diameter. The values
and trends, presented in dimensionless normalized form here, should have implications
in biological and colloidal sciences in relation to thin-walled capsules and in electronics
in relation to thin encapsulating filmgDOI: 10.1115/1.1433477

1 Introduction Malyshev[17], Williams [18], Chia[19], and Wan[20]; and (iii)
clamped annular plates subjected to axisymmetrical line load
around a central hole, where series or numerical solutions are
available ([19,21)). It is, however, difficult to manipulate series
solutions to formulate analytical adhesion mechanics. In this pa-
@i‘r we will derive an exact analytical model based on linear
sticity, an average membrane stress approximation and a

the theory is confined to rigid solid bodies and therefore the simple energy balance, similar to the various forms of blister tests

plication to bodies comprising thin flexible films is doubtful. Forsig d\%;rgg I?e?{l;glr([ft(tiﬁzrgi/vz;}r)k The exact but nonlinear exten-
instance, adhesion of membranous biological capsules does nop '
develop the Hertzian stress field at the contact circle required by

the JKR theory(e.g., an erythrocyte cell with a wall thickness of

100 A and elastic modulus of roughly 1.0 MPa adhered ontoza The Constitutive Relation Without Delamination
rigid substrate([9]), and formation of adhesion plaque in cell Figure 1 shows a thin isotropic film adhered onto a rigid plate

Iocomotlon([lo]))_. Anew adhesive contact mechanlcs is therefor ith a central circular opening of radiws The film possesses a
needed. We earlier constructed a one-dimensional model for the

o 3 Yo .
adhesion between a rigid rectangular punch and a thin film é xural rigidity D=Eh/12(1-p°) with an elastic modulust,

different thicknesg[11]). A two-dimensional model was also de- %I_SSOHS_raEIO,v, ﬁnq thlcknesashh. A cylindrical fl_art] p#nch of d
rived for the adhesion between an axisymmetric punch andragus: & IS broug t into an adnhesive contact with the expose

membranelike film under pure stretching, where a “pull-off”f'ﬁ!n via the hole. An external forcds, is applied vertically to pull

event was predicted when the contact circle shrank to rougt € punch a distance, away from the film. The elastic mem-

] : ; ane stress thus developed in the film causes an axisymmetric
0.19 of the film diametef[12]). In this paper, we attempt 0 re- 4o, yination 1o drive into the punch-film interface. The contact
derive the two-dimensional model, but relax the constraint of pu

Sicle of radius,c, shrinks until the punch completely separates

e g an0e of ickness and stftnese:fth e fim t pulft  For simplciy.the miglane o te
9 9 9 m is taken to be the neutral plane in the following discussion.

forg;gttg?ir::;vnlll bIZrC(énizlgzrtﬁ:d.deformation of circular plate wa The constitutive relation without delamination is derived as fol-
Y, 1arg P Fows. Within the contact circler<c), the film profilew(r) con-

studied extensively(i) clamped plates under uniform pressure, ag

: ) : . rms to the planar punch geometry. In the noncontact annulus
discussed in the classical works by Hencky, Nadai, and Yaily . o "\ ?s goveF;ned b?/ the voyn Karman plate theory for
summarized in Timoshenko and Woinowsky-Krieddg]) and large defléctior{[lS])‘
more recent studies by Mansfie[d4], Sheplak[15], and Wan 9 )

[16]; (ii) clamped plates under central point load, as discussed by d [1 d ( dw” 1 [ E dw
=Rl

Thin film adhesion is an important subject in biologi]),
electronics([2]), and colloids([3]). Most up-to-date studies are
based on the celebrated Johnson-Kendall-Rol§éikR) adhesion
theory and its various modified fornge4,5]), which proved to be
very useful in describing the adhesive contact between a ri
punch and an elastic half-spa€&—8|). One shortcoming is that

—— dr|r dr ' dr D dr 1)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 2
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cussion on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler,

Department of Mechanical Engineering, University of Houston, Houston, TX 77204-

4792, and will be accepted until four months after final publication of the paper itself *Here “pull-off” refers to either fixed load or fixed grips, as we suggested earlier

in the ASME DURNAL OF APPLIED MECHANICS. ([11).
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at é=¢, 6=0. 7)
An exact solution tg5) is found to be

1
9:<P[C1|1(,3§)+C2K1(,3§)_ T} (8)
B¢
where
c _i[ Ki(BO—Ku(B)IE } ©)
LB 1UBKUBY —11(BOKL(B)
_i 11(BY)—11(B)I¢
2 B KB (BD Ky BOL(B) | (10)
F The functionsl;(x) andK;(x) are theith order of the first and

found by integrating8) with respect to¢ from { to 1,

W= 2 {CuBLIa(BE)~ 1o B)]~ CaBlKo(BE) ~Ko(B)] - log ).

Aluminum (1)

DubSEALE & The central deflection, or punch displacement, is givenWy
:W|§:§. Figure 2 shows the normalized profileg/(W,) as a
|¢ %a >| tf function of ¢ for {=0.1 andB=1, 10, 100._ Note that_ the slopg at
h ¢=1 andé={¢ are always zero. The elastic energy is stored in the
o r noncontact annulus of area(a?—c?)=mra?(1—{?). The aver-

age membrane stress is found (h¥1,25)
N Eh 1 a1 /dw\? g 1
% é T2 1=z ), 2 \ar] " (12)
/ \ or, in a normalized form,
<—€ Vertical force in a ring 3—|> N

acting on contact circle 32: 1 6§2 f 102§d§. (13)
Fig. 1 Sketch of a circular cylindrical flat punch adhered onto o . ¢
a thin membrane constrained at the circular rim. A free-body Substituting(8) into (13),
diagram showing the external force, bending moments and ten- 1-72 12
sile membrane stress. (P:'gzl ¢ ] (14)
6[9(B)—9(BY)]

where
d
Ne=o-(1N,) ©)

whereN,= o, /h andN,=0a/h are, respectively, the radial and
tangential membrane stresses. The set of nonlinear equations ¢
only be solved numerically{19]). To obtain an analytical solu-
tion, we assumé\,~N;~N for small strain so that the new con-
figuration is the same as exerting an in-plane tensile load arour
the plate circumference. Nowl) only is to be solved,2) is
satisfied in the first approximation sin@bw/dr~0, and(3) is
automatically satisfied. It is convenient to normalide by the
dimensionless quantities as follows:

go
2
r W C 7C

— — . 2 N
3 a’ W h 4 a’ 4 B %
B Na? B Fa? _dw_ adw A
“No ““Zmon “a har @

The parameteB denotes the important ratio of stretching stress to
bending rigidity such thai) whenB— 0, the film is platelike and
allows bending only, andi) when 8—, the film is membrane-
like and allows stretching only. Therefor@) is recast as follows:

d?9  de
fzd_gz+§d—§—(1+ﬁz§2)0=<p§ (5) 0.0 0.5 1.0
which is a linear modified Bessel differential equation. The r;= r/a

boundary conditions are ) ) )
Fig. 2 Film profiles for ¢=0.1 and B=1, 10, 100. Note that the
at £=1, 6=0 and W=0 (6) gradients at the outer and inner circles are zero at small B.
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second kind modified Bessel functions, respectively. The profile is
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Fig. 3 Constitutive relation ¢ (W,;) for various ¢ as indicated.
The pure bending and pure stretching limits are shown as
dashed lines. There exists an intermediate bending-stretching
transition region.

2 1 | 2
g(X)=012X7 (1+X7)I1(x)27 lo(X)— lf(x))
X2 2Ko(x)K(x)] 1
+C | Ka00? =Ko = == ==+ 25 l0g(x)
2

2

fa(0)
o= (19)

where

{?log % log ¢
fi=1-2*- 1= (20)
Heren=1 and¢(W,) is linear. Equation{19) is shown as dashed
lines in the bending dominant region in Fig. 3. In the case of a
central point contact witf=0 andf,({)=1, (18) reduces to the

familiar classical solution for a circular platgl3]):

W= 2 (1= &+ ¢ log €7). (21)

|6

For a pure membrane with a laryé, and 83—, (11) reduces to

B log ¢
W=W, @ (22)
where
f (é«) 1/3
wo=[22—4} oM (23)
with
f,=(1-¢%)log?log &% (24)

Now n=3 and¢(W,;) becomes cubic. Equatiq23) is shown as
dashed lines in the stretching dominant region in Fig. 3. In the
case of{=0, the contact circle reduces to a point and the profile
becomes an inverted cusp, in reminiscent of the shaft-loaded blis-
ter test([23]). In the case of mixed bending and stretching in a
film of intermediate thickness and stiffness, the transition zone
spans roughly two decades fronf,=0.1 to 10 and £n<3.

5 [cll(,(x)—czK0<x>]+2clcz[%[lo<x>Ko<x>

+|1(X)K1(X)]X|1(X)Ko(X)]~ (15)

The constitutive relatiorp(W,) can now be found analytically by
eliminating 8 from (11) and(14), though the very involved func-
tion is not given here explicitl§.Since bothe andW, are func-
tions of B, we choose to show(W,) in Fig. 3 as a parametric
plot by varying B8 for fixed ¢, as suggested earlier in the one-
dimensional mode{[11]). For convenience, the function is recast
into

§0°<W0n (16)
with =
"= dlog W) ‘(?) B/ B } (17

An analytical functionn(W,) can be derived by substitutind1)
and (14) into (17), but is not given here. Figure 4 shows a para-
metric plot forn(W,) by varying 8.

Two limiting cases are of interest here. For a pure plate with a
small W, and 8~0, (5) becomes an equi-dimensional ordinary
differential equation andl1) collapses to

(1= (1- 2+ Elog £%) — 2 log {3(1—- €2+ log £2)
(1-¢%)?=¢%log ? log ¢

W= WO
(18)

Fig. 4 Gradient of the constitutive relation

1

Bending Limit

T
Stretching Limit

0
101 100

10! 10?

n as a function of

with W, for various ¢ as indicated. When bending dominates at

2The lengthy solution can be found by MATHEMATICA and covers many pagesand 3.
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small W,, n=1; and when stretching prevails at large
=~3. In the intermediate region

Wy, n

(0.1<W,<10), n lies between 1
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3 Thermodynamics of Thin Film Adhesion/
Delamination

The thermodynamics of delamination can be constructed as f

lows. The potential energy of the external load,, the elastic

energy stored in the elastic membrablg,, and surface energy of

the contact circleUg, are defined as /T
U p— — FWO (25)
UE:J Fdwoz(m FWO (26)
Ug=—(mc?)y (27)
using (16), wherey is the adhesion energy of the punch-film in- 0.0 0.2 04 0.6 0.8 1.0

terface. Following the formulation suggested by Maud@k the
enthalpy,H, for fixed load(constantp) and the internal energy,
for fixed grips(constantW,) are given by

H=Up+Ug+Ug (28)
U=Ug+Us. (29)
Four normalized quantities are defined as follows:
o H U U
" (2wDh%a?’ = (2wDh%a?)
r——S oY __ (30)
(2Dh?%/a%)’ (2Dh?%/a%)"

At delamination, a mechanical energy release rate is defined a

d IUg
G=— Up+U = 31
7ty (V7 Ve) e, (31)
or, in a normalized form,
e ( n AW, -
RS TAFTTON (32)

Note thatG (or I') is identical in fixed grips and fixed grips con-

figurations. The cra% dri\iing force, or “motif{[8]), is defined
the gradient of eitheH or U such that
(T—T*)= gH a0 @3)

W) w>
The contact circle expands whdn<I'*, diminishes whenl’
<I'*, and stays stationary at equilibrium whEr=T"*. The sta-
bility of the system is determined fyI'/d(£?)] such that a nega-
tive quantity corresponds to a stable equilibrium, positive for
unstable equilibriunii.e., a spontaneous crack growthnd zero
for a neutral equilibrium. The delamination mechanics is illu
trated by the two limiting cases as follows.

For a pure plate, substituting=1 into (28) and(29) so that

(34)

(3%)

Figure 5a) shows a family of curvesH/I'*) as a function of

£?. Each curve possesses a local maximum, denoting an unstab

equilibrium. The equilibrium curve is found by substitutifi)
into (32),
992 dfy

I=- E[rg”z)L:X|B_O((PWO)

(36)
with
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Fig. 5 A pure plate. (a) The enthalpy (A/T*) as a function of
contact area {2 under fixed load for [¢/(I'*)¥?]=1, 2, 5 and 10.
The dashed line joining the maximum of each curve represents

the unstable equilibrium.  (b) The internal energy (U/T*) as a
function of contact area ¢ under fixed grips for [Wqy/(I'*)¥?]
=0.01, 0.04, 0.08, 0.112761. The dashed line represents the
stable delamination process. Pull-off occurs at the point of in-
flexion at W,".

_ (1-g*+log £)?
Xs-0= 2= —207+ 7"~ Flog 2I0g 1

@37

which is shown as a dashed curve in Figa)5 If we now start
with a full punch-film contact witht =1 and slowly raisep from

£Ero, no delamination is expected siriéds always a local mini-

mum at{=1. Theoretically, it requires an infinite external load to

initiate delamination. If any delamination is to occur, an energy
arrier must be overcome. Any deviation from the unstable equi-

librium will lead to either spontaneous increase of the contact area

towards{=1 or decrease towards=0. Figure 5b) shows a fam-

ily of (U/T'*) as a function ofz%. Each curve possesses a local

minimum, denoting a stable equilibrium. Substitutif@?) into

(33),

r

~ d(l/fl)} )
W,

2

W { A

0
Whelch is identical to(36). Starting with{=1 at Wy=0, if we
gradually raiseW,, the equilibrium point will move towards a
decreasing, i.e., delamination. AW,"=0.1127617*)*2 when
{'=0.175754 andp'=1.54548, the local minimum of is re-
placed by a point of inflexion. Further increaseVig§ results in a

complete separation between the punch and the film, or “pull-
off.”
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Fig. 6 A pure membrane. (&) The enthalpy (H/T*) as a func-
tion of contact area ¢? under fixed load for [¢/ (I'*)¥4]=0.5, 1.0,
2.0 and 2.74636. The dashed line joining the maximum of every
curve represents the unstable equilibrium. Spontaneous
delamination occurs at . (b) The internal energy (U/T*) as a
function of contact area  ¢? under fixed grips for [W,/(I'*)¥4]
=0.3, 0.4, 0.5 and 0.562441. The dashed line represents the
delamination process. Pull-off occurs at the point of inflexion

at w,'".

For a pure membrane under stretching only, Figa) nd Gb)
show H/T*) and U/T'*), respectively, as functions ¢f. Sub-
stituting (23) into (32) to be

F:X|B~x((PWO) (39)
with
_2-202-{log ¢
Mo = 221~ ) log( 1) “0)

which is identical to Williams’s solutior([25]). Under a fixed

load, the punch-film interface is §table &t 1 until ¢ reaches
©'=2.74636*)%* At this point,H is a monotonic increasing

function of  and delamination occurs spontaneously ufitiO.

Under fixed grips, delamination grows in a stable manner unti

“pull-off” happens at W,'=0.562441[*)¥
=0.194545 andp"=0.413392(* )34,

when {7

The thermodynamics of thin film delamination with intermedi-
ate film thickness and stiffness under mixed bending and stretct
ing is similar to the above description and will be illustrated in the

next section.

4  The Constitutive Relation With Delamination

) . . N
For a fixedI'™, ¢(W,) with delamination can be found by Fig. 8 Constitutive relations with delamination for various

spondinge (W) is shown in Fig. 7. Curve AMP represents the
pure plate limit. Along the stable delamination branch AM, the
punch moves gradually away from the substrate, while the exter-
nal force decreases. At the “pull-off” point M at’ where
(dW,/dg) =0, the delamination becomes spontaneous, resulting
in a complete separation of the film from the punch, i.e., the
“pull-off” event (c.f., Fig. 5b)). Branch MP shows a positive
(de/dW,) and is therefore unstable and physically inaccessible.
Note that the curve terminates Bton the bending limit. Curve
JKL represents the pure membrane limit. Delamination is stable

10* —

103

s 102

10!

100~

Fig. 7 Curve ABC shows the constitutive relation with delami-
nation for I'*=10* The solid gray line is the mixed bending-
stretching constitutive relation without delamination for a cen-
tral point load ({=0). The two dashed gray curves AMP and
JKL show the bending and stretching limits, respectively.

10°

10

103 <

S 102

10!

10°

10 ' ! ! !
102 10!

10?

T*

substituting(11) into (32) to obtainT'(3, £) and then conformally ,¢'ingicated (solid lines ), along with the no-delamination rela-

mapped into ap—W, space using a method introduced earliefions for ¢=0 to 0.9 with an interval of 0.1 and

£=0.95 (gray

([11])). To illustrate the theoryl™ =10 is chosen and the corre- lines).
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Normalized adhesion energy I'*

Fig. 9 The critical load ¢' and punch displacement

pull-off as functions of
and stretching limits

10¢

w," at
I'* (solid lines ), along with the bending
(dashed lines ).

curves begin with a platelike behavior at smalj and eventually
terminate on the nondelamination curgg¢W,) with {=0. For
I'*<10, ¢(W,) lies mainly in the bending dominant region
where stretching is negligible. F&* > 107, ¢(W,) deviates from
pure bending and approaches the stretching limit.

The pull-off radius depends weakly ghand is confined to a
narrow range of 0.175754;7<0.194545(r, {T~0.18. Figure 9
showse' and W, at pull-off as monotonic increasing functions
of I'*, along with the two limits.

5 Discussion

It is interesting to compare our axisymmetric punch-film model
with the one-dimensional rectangular punch-film mogéll)),
Kendall's adhesion models for circular flat punch with an elastic
half-space and thin filn{[7]) and JKR adhesion theory of solid
sphere to rigid substrat¢4]). The comparison is summarized in
Table 1.

The rectangular punch-film modgfL1]) has similar nondelami-
nation constitutive equations to the axisymmetric punch, in that,
both are linear in the bending limit, cubic in the stretching limit
and a transition arounw/y~ 1. Significant difference lies in the
“pull-off” event. The rectangular contact in the one-dimensional
geometry reduces to zero, i.e., a line contact, in a stable manner,
while the axisymmetric contact in the two-dimensional geometry
is finite and vanishes abruptly in an unstable manner. One inter-
esting implication is that of an elliptical punch with a conic ec-
centricity e, wheree=0 corresponds to a circular punch aad
=1 to a rectangular punch. Asincreases from 0 to 1, there are
two consequencesi) the ratio of contact area at pull-off to punch

along branch JK and nonphysical along branch KL. Point K is thgrea decreases from a maximum of (0%:8).0324 to zero, and
“pull-off” point at ¢ (c.f., Figure b)). The curve terminates at L (ji) the degree of stability at pull-off increases.

on the stretching limit. Curve ABC represents the constitutive When a rigid cylindrical punch is pulled away from an elastic
relation for a real film under mixed bending and stretching. Atalf-space([7]), the adhesive contact circle remains identical to

small Wy~ 1, bending prevails ang(W,) follows closely AMP.

the punch dimension until critical pull-off force is reached. The

WhenW, exceeds 1, membrane stretching becomes more dorsiitical force and punch displacement at pull-off are identical for
nant ande(W,) is forced to deviate towards JKL. Pull-off occursboth fixed load and fixed grips configurations. This is in contrast
at point B. The branch BC is nonphysical, and the curve termyith the punch-film model where a stable delamination and finite

nates at C. Figure 8 shows a family @fW,) for variousI'*. All

Table 1 Comparison between various theories

contact radius at pull-off are expected under fixed grips.

Present model Wan Kendall JKR / Maugis
Geometry Rigid cylindrical punch to film Rigid rectangular punch to | Rigid cylindrical punch | Sphere to rigid flat
constrained at periphery film constrained at edges to substrate substrate
E:lr];o;f* Pure plate: Pure plate: Elastic half space: Fixed load: % Ry
Fixed load: infinite Fixed load: infinite [81[ Ea’y ]” 2 5
3. \1/2 3 1/2 -— Fixed grips: —
Fixed grips: 1.98216 | 221 Fixed grips: | —or ¥ _ 1-v ixed grips: Ry
1- 3°A-ve) v
Pure membrane: Pure membrane: Thin film: mz(z_'cl) where R is the
N soEm? T h radius of sphere.
Fixed load: 5.51277 | 214 Fixed load: | ,
1-v? 271 -v?) where K is the bulk
Einlat 174 S12Ehy® s | modulus of the film.
Fixed grips: 0.83100 Y d Fixed grips: ____Y2
1-v? 2701-v*)
Pull-off Pure plate: Pure plate: Fixed load: a Fixed load: 0.63 a
e ot
radivs a Fixed load: a Fixed load: film area. Fixed grips: a Fixed grips: 0.30 @
Fixed grips: 0.175754 a Fixed grips: line contact
. Pure membrane:
Pure membrane: ) ] (N.B.) Here a is the (N.B.) Here a is the
Fixed load: a Fixed load: line contact radius of cylindrical contact radius at
Fixed grips: 0.194545 a Fixed grips: line contact punch. zero applied load.
References [11] {71 [4], [8]
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Multimode Approach to Nonlinear
Supersonic Flutter of Imperfect
Circular Cylindrical Shells

M. Amabili The aeroelastic stability of simply supported, circular cylindrical shells in supersonic flow

Dipartimento di Ingegneria Industriale, is investigated by using both linear aerodynamics (first-order piston theory) and nonlinear

Universilta di Parma, aerodynamics (third-order piston theory). Geometric nonlinearities, due to finite ampli-

Parco Area delle Scienze 181/A, tude shell deformations, are considered by using the Donnell's nonlinear shallow-shell
Parma |-43100, Italy theory, and the effect of viscous structural damping is taken into account. The system is

. discretized by Galerkin method and is investigated by using a model involving up to 22

F. Pellicano degrees-of-freedom, allowing for travelling-wave flutter around the shell and axisymmet-

Dipartimento di Scienze dell" Ingegneria, ric contraction of the shell. Asymmetric and axisymmetric geometric imperfections of

Universita di Modena e Reggio Emilia, circular cylindrical shells are taken into account. Numerical calculations are carried out

Via Campi 213/8, for a very thin circular shell at fixed Mach number 3 tested at the NASA Ames Research
Modena, -41100, Italy Center. Results show that the system loses stability by travelling-wave flutter around the

shell through supercritical bifurcation. Nonsimple harmonic motion is observed for suffi-
ciently high post-critical dynamic pressure. A very good agreement between theoretical
and existing experimental data has been found for the onset of flutter, flutter amplitude,
and frequency. Results show that onset of flutter is very sensible to small initial imper-
fections of the shells. The influence of pressure differential across the shell skin has also
been deeply investigated. The present study gives, for the first time, results in agreement
with experimental data obtained at the NASA Ames Research Center more than three
decades ago[DOI: 10.1115/1.1435366

1 Introduction theory and a simple mode expansion without considering the com-
The first reported occurrence of flutter instability on circulaEanlon mode(a second standing-wave mode described angularly

cylindrical shells appears to have been on the V-2 rocket. Sing¥ Sin(?). the orientation of which is atr/(2n) with respect to
that time, the study of the aeroelastic stability of cylindrical shell§1® original one, described by cosj, n being the number of
in axial flow is fundamental in the design of skin panels on aerfodal diametejsnor the interaction with the axisymmetric modes.
space vehicles, high-performance aircraft, and missiles. A fundee absence of the companion mode does not permit travelling-
mental contribution to studies on this topic is due to the introdutave flutter. Expansions neglecting the axisymmetric modes are
tion of the piston theory by Ashley and Zartarian in 1958]). not able to capture the correct nonlinear response of circular shells

Many interesting studies have investigated the shell stability and are only suitable for curved panels. The theory developed by
supersonic flow by using a linear shell model, and among othetsbrescu[10,11] is also suitable for composite shells and nonlin-
Dowell [2], Olson and Fung3], Barr and Stearmaf¥], and Ga- ear terms in the supersonic flow pressure calculated by the third-
napathi et al[5] predicted the onset of flutter instability. Experi-order piston theory were included. No results on limit-cycle am-
ments([3,6]) have indicated that the oscillation amplitude of flutplitudes were given. Results obtained by Librescu can also be
ter is of the same order of the shell thickness; therefore, fgund in his book([12]).
nonlinear shell theOI’y Should be Use-d in Orqer to prediCt aCCU'O|Son and Fundls] modeled S|mp|y supported shells using a
rately the flutter amplitude. Extensive reviews of works oRjmpjified form of Donnell’s nonlinear shallow-shell theory and a
aeroelasticity of plates and shells were written by Dowglland  ¢impje two-mode expansion without considering the companion
Bismarck-Nasi(8]; a few nonlinear studies on shells and curvegh, 4o bt including an axisymmetric term. In their study, the su-
panels were '”C'“ded- A SPeC'.f'C review on nonllr_lear panel ﬂunﬁ'érsonic flow was modeled by using the linear piston theory. In
was written by Mei et al[9], including five studies on curved b t studies. E d OlEbh15 al idered
plates. Many experimental results on aeroelastic stability of (:ircEi-J sequent studies, tvensen an -9 also considere

e companion mode, therefore employing a four-degree-of-

lar cylindrical shells in axial air-flow were collected in the pape . ) .
by Horn et al[6]. reedom mode expansion. This expansion allows the study of

Only a few researchers used a nonlinear shell model to invd&Vvelling-wave flutter, where nodal lines are travelling circumfer-
tigate the aeroelastic stability of cylindrical shells and curved paRntially around the shell; this phenomenon is similar to travelling
els in axial supersonic and hypersonic flow. Libregbd,11] stud- waves predicted and measured for large-amplitude forced vibra-
ied the stability of shallow panels and finite-length circulafions of circular cylindrical shells. However, similarly to Evens-
cylindrical shells by using Donnell’s nonlinear shallow-shelen’s ([16]) expansion for the flexural shell displacement, these

expansions are not moment-free at the ends of the shell, as they
should be for classical simply supported shells, and the homoge-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  negus solution for the stress function is neglected. Evensen and

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . L . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March 7Q|SOI’] [14'13 investigated periodic solutions by using the har-

2001; final revision, October 1, 2001. Associate Editor: D. A. Siginer. Discussion ¢dfionic balance method and solved the nonlinear algebraic equa-
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmentijging onIy for some special cases. The results obtained are differ-

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will tf th litati int of vi ith t to th f
be accepted until four months after final publication of the paper itself in the aAsMENL Trom the qualitative point or view, with respect 1o those o

JOURNAL OF APPLIED MECHANICS. Olson and Fund13]; this is due to the different order of the
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perturbation approach used. Ols$a] added to the problem the extensive experimental study on supersonic flutter of flat and
effect of a particular temperature field on the material propertisightly curved panels at Mach number 2.81 was performed by
by using a simple two-mode expansion. Anderson[28].

Carter and Stearmali8] and Barr and Stearmda,19] per- The studies developed in the past for the stability of circular
formed a series of theoretical and experimental studies on tdindrical shells in flow do not agree sufficiently well with ex-
supersonic flutter of circular cylindrical shells by including geoP€rimental results, as pointed out by Horn et @]. In particular,
metric imperfections; however, the theoretical analysis was linefpr Subsonic Mach numbers, highly divergent and catastrophic

They also introduced an improved linear piston theory to descriffiistapilities have been measured experimentally for clamped-
the shell-flow interaction for Mach numbeké> 1.6. clamped copper shells excited by a fully developed turbulent flow
Amabili and Pellicand 20] studied the aeroelastic stability of ([6.]).' This kind o_f |nstab|||ty has recently been explalneq by Am'
simply supported, circular cylindrical shells without imperfection gg'egt ;fl.bté)){hu?rl]r:g n?a(r[]gg]“)nzﬁtrj ngetlzle rrrrl]gld Zlnzng n?liﬁz?tlsﬂgg)c\;\r/n?

in supersonic flow. Nonlinearities caused by the large-amplitu

hell i idered b . D " i fow ([30]). Numerical results obtained are in agreement with ex-
shell motion were considered by using Donnell's non '”e?éerimental data reported in referer¢aL)).

shallow-shell theory, and the effect of viscous structural damping a review of studies on the nonlinear dynamics of shells, which
was taken into account. Two different in-plane constraints wetge closely related to the present study, was recently written by
applied to the shell edge§) zero axial force andii) zero axial Amabili and Pzdoussig32] and is avoided here for brevity.
displacement. The linear piston theory was applied to describe therhe nonlinear stability of simply supported, circular cylindrical
fluid-structure interaction by using two different formulationsshells in supersonic axial flow is investigated in the present study
taking into account or neglecting the curvature correction terry using an improved structural and aerodynamic model with re-
The system was discretised by Galerkin method and was invesipect to the analysi$20]) recently developed by the same authors
gated by using a model involving seven degrees-of-freedom, aFthe present paper. In particular, both linear aerodynaffiics-
lowing for travelling-wave flutter of the shell and shell axisym-order piston theoryand nonlinear aerodynamicthird-order pis-
metric contraction; modes with up to two streamwise half-wavden theory are used. Geometric nonlinearities, due to finite am-
were considered. Results show that the system loses stability fdfude shell deformations, are considered by using Donnell’s
travelling-wave flutter. A good agreement between theoretical calonlinear shallow-shell theory, and the effect of viscous structural
culations and experimental data reported in referefidp was damping is taken into account. Asymmetric and axisymmetric
found for flutter amplitudes. geometric |mperfect|ons_of the circular cyllndrlcgl s_hells_and
Bolotin [21] treated the nonlinear flutter of curved plates in histatic pressure are taken into account. The system is discretized by

book on nonconservative problems. DowP,23 investigated Galerkir} pré)jze((:jtions andfi? invdestigatleld by usfing ta moﬁel involv-
the nonlinear flutter of curved plates of shallow curvature by usiri %t up fc:h h eliqre%s-c;]— Irlee lom, & ?\_/vmg tor tr_ave Ing-wave
a modified Donnell’s nonlinear shallow-shell theory. Both simpl er of the shell and shell axisymmetric contraction.

) . .2 _Numerical calculations are performed for a copper circular
supported and clamped plates were considered. The linear p'éﬂ%ll fabricated by electroplatinpg and tested in the?réfrt) super-
theory was used to describe the fluid-structure interaction. 20X !

) ) ; nic wind tunnel, at fixed Mach number 3, at the NASA Ames
modes,_ with different numk_)ers O.f streamwise waves, Were Iprageqrch Centdf3,13)]) in 1964. During the experiments, it was
cluded in the mode expansion. Limit-cycle amplitudes were calysqryeq that the pertinent streamwise wavelengths of interest are
culated and the effect of an internal .pressurlzanon. was mves\yéry large with respect to the boundary layer thickness, suggesting
gated. The effect of the curvature in the flow direction waga; the influence of the boundary layer is probably negligible. In
analyzed; results show that streamwise curvature is dramaticallys study, a program for the continuation of solution of nonlinear
destabilizing for the onset of flutter. VoI'mir and Medvedd@d] gitferential equations is used to obtain the bifurcation diagrams.
investigated the nonlinear flutter of circular cylindrical panel§oreover, direct integration of the equations of motion is used for
with initial deflection and axial loads in supersonic flow. They:omparison and investigation of amplitude modulated motion
used Donnell's nonlinear shallow-shell theory to model the pangtising by a Neimark-Sacker bifurcation of the periodic orbit.
dynamics and linear piston theory to model the fluid-structure
interaction. The numerical solution was obtained by using the fi-
nite difference method. A more recent study on the influence gf . . -,
curvature on supersonic flutter of simply supported panels is dée Equation Pf Motion, Boundary Conditions, and
to Krause and Dinklef25]; in this study the curvature of the panelMode Expansion
is in the direction of the flow. Krause and Dinkler used the finite A cylindrical coordinate system (®;r,#) is chosen, with the
element method to discretize the structure taking into account verigin O placed at the center of one end of the shell. The displace-
Karman (analogous to Donnellgeometric nonlinearities; imper- ments of points in the middle surface of the shell are denotad by
fections were used to describe the curvature of the panel. Theandw, in the axial, circumferential, and radial directions, re-
third-order piston theory was used to model the fluid-structuspectively;,w is taken positive inwards. Initial imperfections of the
interaction. They found that the flutter boundary is much lower fagircular cylindrical shell associated with zero initial tension are
largely curved panels than for flatter panels; they also predictddnoted by the radial displacememg; only radial initial imper-
chaotic flutter motion. fections are considered. By using Donnell’s nonlinear shallow-
Hypersonic flutter of simply supported, orthotropic curved parshell theory, the equation of motion for finite-amplitude transverse
els was studied by Bein et 426] and Nydick et al[27] by using dynamic deformation of a thin, imperfect, circular cylindrical
Donnell's nonlinear shallow-shell theory, the Galerkin methoghell is given by([33-35)
and direct integration of the equations of motion. Expansion of

flexural displacement involving modes up to eight longitudinal _, _ ) 10%F 1[0%F(d*w d*wq
half-waves and one circumferential half-wave showed conveRV W+ ChW+phW=p—pu+ =7+ 5| | 72 + - 7
gence of the solution. First-order piston theory, third-order piston

theory, Euler equations, and Navier-Stokes equations were used to _s J°F ( J*w N «92Wo)

describe the fluid-structure interaction with hypersonic flow; sig- IXA0\ X0  IXx96

nificant differences were found by using different models. Non- ) ) )

simple harmonic motion with modulations of amplitude was ob- N E(‘?_WJF 9" Wo )
served for sufficiently high post-critical dynamic pressure. An ax2\ 9% " 96%)|

118 / Vol. 69, MARCH 2002 Transactions of the ASME



whereD = Eh®/[12(1— v?)] is the flexural rigidity,E the Young’s and

modulus, v the Poisson ratioh the shell thicknessRk the mean _ _

shell radiusp the mass density of the shatlthe damping param- v=0 atx=0L, (80)

eter, p the radial aerodynamic pressure applied to the surface \ghereM, is the bending moment per unit length; moreover,),

the shell as a consequence of the external supersonic(los- andw must be continuous id.

tive inward, and p, is the pressure differential across the shell The radial displacement is expanded by using the linear shell
skin (positive outwargl The overdot denotes a time derivative angigenmodes for zero flow as the base and can be written as fol-
F is the in-plane Airy stress function. Hefe is given by the |ows:

following compatibility equation([33—35):

M; N
iwp: ! (72_W + L ‘72_W ? WX, 0,t)= >, > [Ann(t)cogno) + By, q()sin(n6)sin(\ yX)
Eh R ox°  R?|\xa6 m=1n=1
My
W Pwy [ PW W) W 92w JPw, .
— | —+ i . + A o(t)sin(\x), (%)
IXAO IXAO ( 0”X2 (9X2 ) (—702 (9X2 (902 mz m,0 m:

(2) wheren is the number of circumferential waves,is the number
. . . ) f longitudinal half-waves\ ,,=m=/L andt is the time;A, (1),
In Egs. (1) and (2), the biharmonic operator is defined ¥$ 0 m : m.n
—[agaxglazl(R(Zgaz)]z Donnell's r?onlinear shallow-shell Bm.n(t), andAp, o(t) are the modal coordinates that are unknown
;quations are accuratelonly for modes of large nu air- functions oft (A, is related to axisymmetric modesThe inte-

. o o gersN, M4, andM,, which give the number of modes used in the
cumferential waves; specifically, /<1 must be satisfied, so that Gajerkin expansion, must be selected with care in order to have

n=5 is required in order to have fairly good accuracy. Donnell'tye required accuracy and acceptable dimension of the nonlinear
nonlinear shallow-shell equations are obtained by neglecting thg,plem. In the numerical calculations, different expansions have
in-plane inertia, transverse shear deformation and rotary inerhen used and compared. The maximum number of degrees-of-
giving accurate results only for very thin shells, thahisR. In  geeqom used in the numerical calculations for E3).is 22. It is
plane displacements are infinitesimal, i.dy|<h, |v|<h, opserved, for symmetry reasons, that the nonlinear interaction
whereasw is of the same order of the shell thickness. The preymong jinear modes of the chosen base involves only the asym-
dominant nonlinear terms are retained but other secondary effe¢tsric modes §>0) having a givenn value, the asymmetric
such a§_the nonlinearities in curvature strains, have been Wgsges having a multiple eliminakex n of circumferential waves,
glected; in particular, the curvature (_:han_ges are expressed by {fkerek is an integer, and axisymmetric modes=(0). For the
ear functions ofv only. These approximations give good accuraC)yyier case, only modes with an oddvalue of longitudinal half-
to study flutter problems. , , _waves have been considered because they are the most important,

The forces per unit length in the axial and circumferential disg previously observed in other studies on nonlinear vibrations of
rections, as well as the shear force, are giver{{Bg]) shells([29,37,3§). Asymmetric modes having up to six longitu-

1 #F 9F 1 8%F dinal half-waves 1,=6) and modes having and 2<n circum-

Ny==—3, Nyg=——=, Ny=—= . (3) ferential waves have been considered in the numerical calcula-
R® 96 X R dxd6 tions. Axisymmetric modes play an important role in nonlinear
The strain-displacement relations are oscillations; moreover, they are fundamental to study the effect of
pressurization. This is the reason why they are included in the
o Nx vw 1fdw 2 gwoawg v ow\? present model; in all the numerical calculatiods=11 is used
(1=29) En- R "2lax] Tax ax T2 Roa (only oddm values. The form of the radial displacement used in

the numerical calculation is

IW  IW (7_U+V(7U (4) 40r61o0r2

trv————+ = —,
RIO RIO  dx R 36 W(x, 0,t)= 21 ;1 [Am kn(t)cogkno)
=

o Ny woov(ow\?  owawg 1 ow\?
A= En= "R 2\ "V ax ax 2\ Rae + Bl D) sin(knd) Jsin(x ;)
Jrz9w z?WO+ au+1au 5 +§A (D)sinA ) %
- fy— 4 — _ si _1)X).
rRiorie " RI6’ (5) 21 Aem-1) (2m-1) (%)
5. Nxg lowow 1 dwaowy 1 dwgy dw Smaller expansions have been used for comparison purposes.
A=) =20 R x 70 TRox 90 "R ox 28 The presence of couples of modes having the same shape but

different angular orientations, the first one described byra#)s(
and the other by sim@), in the periodic response of the shell leads
(6) to the appearance of travelling-wave flutter around the shell in
angular direction. This phenomenon is related to the axial symme-
In this study, attention is focused on a finite, simply supportetdly of the system. The travelling-wave flutter represents a funda-
(with zero axial loag, circumferentially closed circular cylindrical mental differencevis-a-vis the linear approach to shell flutter.
shell of lengthL. The following boundary conditions are imposed: The initial radial imperfection, is expanded in the same form
of w, i.e., in a double Fourier series satisfying the boundary con-

+l(9u+r9v
R o0 ox|

w=wq=0, (7a) ditions (7a,c) at the shell edges
M, = —D{(d*W/9x?)+ v[ 9°wI/(R?36%)]}=0 at x=0L, M, N
D) o, 0= S S [AmncoLnd)+ B sin(n) Isin(Amx)
and m=1n=1
PwWoldx?=0 at x=0L. (70) §~
+ A oSIN(NX), 10
N,=0 atx=0L (8a) 2, Amo ST ¢
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Fig. 1 Amplitude of oscillatory solutions versus the freestream static pressure; n=23, linear pis-
ton theory. ——, stable branches; ----, unstable branches.  (a) Maximum amplitude of the first longi-
tudinal mode A, ,(t)/h; (b) maximum amplitude of the first longitudinal mode B, ,(t)/h; (¢) maxi-

mum amplitude of the second longitudinal mode Az n(D)/h; (d) maximum amplitude of the second
longitudinal mode B, ,(1)/h; (€) maximum amplitude of the third longitudinal mode Az n(Dlh; (F)
maximum amplitude of the third longitudinal mode B3 (1) h; (g) maximum amplitude of the fourth
longitudinal mode A, ,(t)/h; (h) maximum amplitude of the fourth longitudinal mode Byn(D)/h; (D
maximum amplitude of the first mode with 2 n circumferential waves A; ,,(t)/h; (j) maximum ampli-
tude of the first axisymmetric mode A, o(t)/h.
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Fig. 2 Time histories of the shell for  p,=3800 Pa; n=23, linear piston theory. (a) Am-
plitude of the first longitudinal mode A1 (D h; (b) amplitude of the first longitudinal
mode B ,(t)/h; (c) amplitude of the second longitudinal mode A, n(D)/h; (d) amplitude
of the second longitudinal mode B, ,(1)/h; (e) amplitude of the first longitudinal mode
with 2 n circumferential waves  Aj,,(t)/h; (f) amplitude of the axisymmetric mode
Aio(D1h.

whereA,, ,, B, andA,, are the modal amplitudes of imper-satisfies exactly the continuity of the circumferential displacement
fections; N, M,, and M, are integers indicating the number of’:
terms in the expansion. Seven terms in the expansion of imper-
fections are considered in the numerical calculatidnssymmet- 27 g 27[ 1
ric imperfection having the same shape of the fluttering mode with f —do= f {
one (A;,,By,), wo (A,,,B,,), and three &5, ,B3,,) longitudi- o 90 o LER
nal half-wavesjii) axisymmetric imperfection with one longitu-
dinal half-wave ?\1,0)- Additional terms can be inserted; those
with 2n circumferential waves can be significant.

P°F aZF) w 1 aw)2
"R 2

w2 "R R0

AW AW,
" RIORIO

de=0, (11)

as it has been verified after calculation of the stress fundfion
from Eq. (2).
The boundary conditions for the in-plane displacements, Egs.
3 Stress Function and Solution (8), give very complex expressions when transformed into equa-
tions involvingw. Therefore they are modified into simpler inte-
The expansion used for the radial displacenvesatisfies iden- gral expressions that satisfy Eq8) on the average[36]). Spe-
tically the boundary conditions given by Eq3a, b); moreover, it cifically, the following conditions are imposed:
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Fig. 3 Flutter response of the shell for  p,=7000 Pa; n=23,
linear piston theory. (a) Time history of the first longitudinal
mode A, ,(t)/h; (b) phase-plane plot of the first longitudinal
mode A, ,(t)/h; (c) spectrum of the first longitudinal mode
Arn(Dlh.

at x=0L (12)

2m
f N,Rd#=0,
0

27 (L
J f N, ,dxRd§=0.
0 0

Equation(12) ensures a zero axial ford¢, on the average at
=0L; Eqg. (13 is satisfied whew =0 on the average at=0,L
andu is continuous ind on the average. Substitution of Ed8)

13)

When the expansions @f andw,, Egs.(9) and(10), are sub-
stituted in the right-hand side of E@2), a partial differential
equation for the stress functiof is obtained, the solution of
which may be written as

F=Fy+Fp, (14)

whereF, is the homogeneous arfg, is the particular solution.
The particular solution is given by
2M 2N
Fo= 21 E (Fmm Sinmy sinné+F,,» Sinm» cosné
m n=
+F s cOSmy sinné+ F, 4, cCOSm7 cosn )
2N
+ 21 (Fonz Sinné+F 4 cOSNA)
A=

2M

+ E (FmozSinmzn+F 0,c0SM7), (15)

m=1
whereN is the same as in E¢9a), M is the maximum oM, and
M,, n=ax/L and the functions of tim&,,;, j=1, ... ,4,have
a long expression not reported here; they have been obtained by
using theMathematicacomputer progrand 39]) for symbolic ma-
nipulations. The homogeneous solution may be assumed to have
the form([29])

F lNR202+1 N, sz —PIRdod
h=3 2 No~ 3R x

—Ny,XR8, (16)

whereN,, N,, andN,, are the average in-plane foréger unit
length resultants, as a consequence of the in-plane constraints on
the average, defined as

o 1 27 (L
N#:H J’O J’O N#dxdﬁ,

where the symbol # must be replaced>yy9, andx6. Boundary
conditions (12, 13 allow us to express the in-plane restraint
stressedN,, N,, andN,,, see Eqs(4)—(6), in terms ofw, wg,
and their derivatives. Simple calculations give

(17

N,=0, (18)

_  Eh Y2 Aot N
Ne_ZWR{_ZE ()T g S S e

m=1 1 m=1

X[AZ () +B2 (1) +2A5 1 (DA (D)

+28m,n(t)§m,n(t)]} : (180)

N,,=0, (1&)

whereN is the maximum oN andN, andM is the maximum of
M, andM . Equation(16) is chosen in order to satisfy the bound-
ary conditions imposed. Moreover, it satisfies E@.on the av-
erage as a Consequence(ofthe contribution ofF, to N being
(2@RL) L[5 37 5%F ,/9x*]RdAdx, and(ii) contrlbutlons ofF,
to N, andN,q being zero.

By use of the Galerkin method, up to 22 second-order, ordinary,
coupled nonlinear differential equations are obtained for the vari-

by Egs.(12) and (13) simplifies computations, although it intro- ables Ay, 1(t), By n(t), and Ap,o(t), by successively weighting
duces an approximatiofit can easily be shown that the boundarythe single original Eq(1) with the functions that describe the
conditions are exactly satisfied mdiscrete points, whemeis the shape of the modes retained in Eb). These equations have

number of circumferential waves
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Fig. 4 Nondimensional flutter amplitude versus nondimensional flutter fre-
quency; ;,=27X226.3rad/s. ——, stable branches; ----, unstable branches.
(a) Amplitude of the first longitudinal mode with n circumferential waves; (b)

amplitude of the first longitudinal mode with 2 n circumferential waves.

terms. The Galerkin projection of the equation of mot{dj in- aerodynamic pressune applied to the surface of the shell as a
cluding the pressure load, has been performed by usiniliie-  consequence of the external supersonic flow. Equafiencan be

ematicacomputer softwar€[39)). expanded into Taylor series for the varialdléa.. close to zero;
the third-order expansion, neglecting higher-order terms, gives
4 Linear and Third-Order Piston Theory ((1.9,1012,2p
The fluid-structure interaction used in the present study is based dw+wg) 1 ow| y+1 d(w+wy)
on the piston theory[1]). As discussed in the Introduction, the P~ — ¥P« — Yt
) L ) . ) ox a, dt 4 X
configuration investigated is related to experiments performed by
Olson and Fund3,13], where the pertinent streamwise wave- 1 ow|?2 y+1[ aw+wy) 1 ow|®
lengths of interest are very large with respect to the boundary — + ~ o 2 |M— @t | (20e)

layer thicknesgsee Fig. 5 if 3]), suggesting that the influence of

the boundary layer is probably negligibeL3]). The linear termg; in Eq. (20a) can be substituted with a more

According to piston theory[1]), the radial aerodynamic pres-accurate expression obtained by linearized potential flow theory
sure p applied to the surface of the shell can be obtained Qys 4q)

analogy with the instantaneous isentropic pressure on the face of a

piston moving with velocityZ into a perfect gas which is confined YPM2 [ d(W+wq) 1 [M2-2] 9w
in a one-dimensional channel; this pressure is given by p1=-— M= T + Ma. MZ—JW
y=17Z 2yl(y=1)
P= P 1+——) : (19) _ wHw
2 a, 2(M2_1)12R . (203)

where vy is the adiabatic exponenf.. is the freestream static

pressureV., is the freestream velocity, aral, is the freestream In Eq. (2(), the last term is the curvature correction term and is
speed of sound. In the analogy, the piston veloZity replaced by neglected in some studies of shell stability based on the piston
the Z=V_ d(w+wg)/dx+dw/dt in order to obtain the radial theory. Except for the curvature correction term, Eq. lfp 0e-
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Table 1 Critical freestream static pressure giving onset of flutter calculated for different expansions of the radial displacement w,
Eq. (9a); n=23, p,,=3452 N/m?. The result for five modes has been taken from Amabili and Pellicano [20]. Case (i) with 22 modes:

expansion given in Eq. (9b) with the options of a maximum of four longitudinal half-waves and k=1,2. Case (ii) with ten modes:
elimination from case (i) of all the modes having sin (kn#) and k=1 only. Case (iii) with nine modes: elimination from case (ii) of
the axisymmetric mode with 11 longitudinal half-waves. Case (iv) with five modes: expansion retaining only Ain,Aany Aoy Azos
Asg.

Casel(i) Case(ii) Caseliii) Casel(iv)
Expansion(number of modes 22 22 10 9 5
Piston theory 3rd order linear linear linear linear
Critical p,. (P9 3614.4 3614.4 3614.4 3746.7 4077(20])

duces to the linear part of Eq. (2D for sufficiently high Mach the linear part of the system. This approach is analogous to having
numbers; Eq. (2B) is more accurate for low supersonic speea very small difference in the stiffness of the system for the couple
and can be used favl >1.6. of modes described by the generalized coordinatgsandB, , .

In the present study, Eq. (& is used for linear aerodynamics This perturbation allows normal bifurcation analysis, as line
(referred as linear piston theory in Sectionahid Eq. (2@), with  branches now emerge from bifurcation points instead of surfaces.
the linear terms modified according to E@Ob), for nonlinear A perturbation of 0.2 percent to the linear frequency of the mode

aerodynamicgthird-order piston theony corresponding td;,, has been used in the present case, so that
differences with respect to the actual systems are almost negli-
5 Numerical Results gible. Direct integration of the equations of motion by using

) ) ) Gear’'s BDF methodroutine DIVPAG of IMSL) has also been

Numerical results have been obtained for a case experimentgiiyiformed to check the results and obtain the time behavior. Ad-
studied by Olson and Funi@] and theoretically investigated by ams Gear algorithm has been used due to the high dimension of
Olson and Fund13], Evensen and Olsofl4,15, Carter and the dynamical system. Indeed, when a high-dimensional phase
Stearmar(18], Barr and Stearmafil9], and Amabili and Pelli- gpace is analyzed, the problem can present stiff characteristics,
cano[20]. The shell and the airflow have the following charactergye to the presence of different time scales in the response. In
istics: R=0.2032m, L=0.39116m, R/h=2000, E=110.32 gimylations with adaptive step-size Runge Kutta methods, spuri-
X 10° Pa, p=8905.37 kg/m, »=0.35, y=1.4, a,=213.36 M/S ous nonstationary and divergent motions, incoherent with AUTO
and M=3; the freestream stagnation temperature is 48.9°C. glutions, were obtained. Therefore the Adams Gear method, de-
structural modal damping coefficietit ,=0.0005, which is com- signed for stiff equations, was used.
patible with the test shel[14,15)), is assumed; for other modes The bifurcation curves for all the most important modal coor-
{x={1pw1nl oy . The test shell is extremely thin, fabricated withdinates versus the freestream static prespurare shown in Fig.
copper by electroplating, and was tested in the7t supersonic 1 for the aerodynamic pressure given by linear piston theory. In
wind tunnel at the NASA Ames Research Center. The experimefis case, 22 modes have been used. The expansion is the one in
tal boundary conditions at the shell edges were quite complgy. (9b) with the options of a maximum of four longitudinal
([3)). In particular, the test shell was soldered to two copper emdlf-waves andk=1,2.
rings, mounted over O-ring seals to allow thermal expansion. In|n Fig. 1 the curves correspond to the flutter amplitudes of the
the present calculations they have been simulated with simgiell (excluding branch 1 that is relative to the trivial equilibrium

supported edges; actual boundary conditions were between simghitior). Results show that the perfect shell loses stability for
supported and clamped edges.

5.1 Shell Without Geometric Imperfections. In this sub-
section, the shell is considered without geometric imperfections. 0.
Initially calculations have been performed for a numier 23
circumferential waves and pressure differential across the shell
skin p,,=3447.5 N/m3, in order to allow comparison with previ- 0.
ous studieg[13-15,20). The effect ofp,, has been taken into
account by using the nonlinear equations, without the linearization
used in previous studigg13—15,18—-20); therefore the static axi-
symmetric deformation due to pressurization has been taken into
account. The freestream static presgureéhas been used as bifur-
cation parameter instead of the Mach numbkrin fact, experi-
mental data available for comparison from the supersonic wind
tunnel tests([3,19)) were collected varying., and keepingM
constant. As a consequence that the flight velotity Ma., and
thata.,.= \yp.. /p., the flight velocityU can be easily related to 0.
the freestream static pressue.

Solutions of the nonlinear equations of motion have been ob-
tained numerically by using) the Auto computer progran41])
for continuation of the solution and bifurcation of ordinary differ-
ential equations, based on a collocation method, @nddirect
integration of the equations of motion. THaito computer pro-
gram is not able to detect surfaces coming out from a bifurcation
point, but it can detect branches. As a consequence that, for the
axisymmetry, the system does not possess a preferential angular
coordinatef to locate the deformation, in the present case surfacey. 5 Amplitude of oscillatory solutions versus the
come out from bifurcation points. In order to useto, a bifurca- freestream static pressure; n=23. ——, third-order piston
tion analysis was performed introducing a small perturbation tbeory; ----, linear piston theory.

Max[ Ay o(0)/h]

1.1 11.2  11.3  11.4  11.5
Freestream Static Pressure (kPa)
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Fig. 6 Critical freestream static pressure versus the pressure differential
across the shell skin p,, for three different numbers of circumferential
waves: ----, N=22; ——, N=23, *-+--- , =24

p..=3614 Pa through Hopf bifurcation. Branches 2 and 3 correaodes having two longitudinal half-waves. Moreover, the ampli-
spond to standing-wave flutter that loses stability very sodnde of the couple of modes with the same number of longitudinal
through bifurcation. Branch 4, which is the attractive solutionyave numbem is the same, giving pure travelling-wave flutter.
represents a travelling-wave flutter around the shell circumfdi-is to be noted that, excluding a very small rangepof after
ence, as can be shown by observing the time histories of the onset of instability due to the perturbation introduced, all
system obtained by direct integration of the equations of motiqRe stable flutter is a travelling wave around the circumference,
for p.,=3800 Pa, reported in Fig. 2. It can be observed in Figss observed in the experiments by Olson and H&#jgnd pre-
2(a, b) that the phase shift betweeh, ,(t) and B;,(t) is ¥, dicted by Evensen and Ols¢t4,15 and Amabili and Pellicano
—¥,=m/2; the same phase shift is observed in Figs, &) for [20]. Figures 2e, f) show that generalized coordinatag », and
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Fig. 7 Critical freestream static pressure versus the pressure differential
across the shell skin p,. ——, theoretical results for imperfect shell, l§1,24
=0.18h, A;,,=0.0966h, A;,=2.46h, and n=24; the gray area delimited by
------- represents the experimental data  ([19]).
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Fig. 8 Amplitude of oscillatory solutions versus the
freestream static pressure; n=24, p,,=5000 Pa; imperfect shell
(B124=0.18h,A;,,=0.0066h,A, ;=2.46h), linear piston theory.
——, stable branches; ----, unstable branches. (a) Maximum
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A, o have a flutter frequency which is twice the one shown in Figs.
2(a—d). A similar phenomenon has been observed for nonlinear
harmonic vibrations of shell§37,3§)).

Branch 4 in Fig. 1 loses stability fgp,.=5600 Pa through a
Neimark-Sackeftorug bifurcation ([42]) and regains stability at
p..=15190 Pa through a second Neimark-Sacker bifurcation. In
the range comprised between these two values, there is a quasi-
periodic flutter oscillation characterized by amplitude modula-
tions, as shown in Fig. 3 fop..,= 7000 Pa. For this value qf..,
amplitude modulations are particularly large when compared with
those observed for different values pf . Figures 8a) and 3b)
show the amplitude modulation and the trajectory in the phase
space; the trajectory fills completely a portion of the plane. This
means that the system evolves on a two-dimensional torus, where
the trajectory is not closed, giving rise to a quasi-periodic orbit.
This happens when the frequencies of oscillations are in an irra-
tional ratio. The effect on the spectrum of the shell oscillation is a
splitting of the flutter frequency into several closely and equally
spaced frequencig@eaks. This feature can be observed on the
spectrum, Fig. &), where two principal peaks, very close to each
other, are visible. Amplitude-modulated flutter was also observed
in experiments, see Fig.(® of reference([3]). It can also be
observed in Fig. 1 that branch 4 presents a curious curve_for
comprised between 11,100 and 11,500 Pa. Branches 5, 6, and 7
are always unstable; moreover, branches 5 and 7 present strong
subcritical bifurcations and are associated with modes with 2
circumferential waves, see Fig(iL In particular, branch 7 could
be very dangerous because highly divergent. However, it is com-
pletely unstable and not attractive, i.e., a repellor. The presence of
multiple unstable orbits makes the phase trajectory very complex.

The flutter frequency, nondimensionalized with respect to the
natural frequencyw,;, (n=23) of the unpressurized shell, is
shown in Fig. 4. Results show that the flutter frequency of branch
4, the most important one, is almost constant; similar result is also
found for branches 2 and 3.

Table 1 shows the effect of different expansions of the radial
displacementv on the critical freestream static pressure associ-
ated with onset of flutter. In particular, the effect of modes with
2n circumferential waves and modes with angular function
sin(nd) is negligible on the onset of flutter. However, the contri-
bution of the latter ones on the nonlinear flutter response is fun-
damental, as previously discussed. Several qualitative and quanti-
tative differences have been found between the present results and
those obtained by Amabili and Pellicafi20] for the same case
with a seven-degree-of-freedom model. The flutter observed in
reference([20]) was always a simple-harmonic oscillation of
smaller amplitude; the difference is mainly due to the different
number of longitudinal modes included in the expansions ahd
to the different way of considering pressurization. Table 1 gives
the quantitative difference between the onset of flutter predicted in
reference[20]) and the one calculated in the present study.

Results obtained by using the third-order piston theory are al-
most coincident with those obtained with the linear piston theory
in the present case. In Fig. 5, a comparison of the results obtained
by using the two theories is shown with only a zoom of the bifur-
cation diagranisee Fig. 1in order to appreciate the small differ-
ence.

Figure 6 shows the critical freestream static pressure associated
with onset of flutter versus the pressure differential across the
shell skin p,, for three numbers of circumferential waves:
=22, 23, 24. Figure 6 shows that the onset of flutter is actually
observed forn=24; however, the difference with respect o
=23 is very small. The effect of pressurization of the shell has a
small stabilizing effect. The last result disagrees with experimen-
tal data obtained by Olson and Fuf®;19]. The introduction of
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Fig. 9 Flutter response of the shell for  p,=6500 Pa; n=24, p,,=5000 Pa; imperfect shell
(B124=0.18h,A;,,=0.0966h,A, ;=2.46h), linear piston theory. (a) Time history of the first
longitudinal mode  A; ,(f)/h; (b) experimental time history  ([3]); (c) spectrum of the first
longitudinal mode  A; ,(t)/h; (d) experimental spectrum  ([3]).

geometric imperfections is needed to better reproduce experiméem softening to hardening nonlinearity of a shell usually hap-

tal results. pens in correspondence of internal resonances between modes of
It can be observed that the shell used in calculations hast shells, e.g. when two modes have an integer tatie, two, or

softening nonlinearit)([ZO]). However, as a consequence that Qhree between their natural frequency.

the onset of flutter there is a coalescence of the natural frequency

of two shell modes with different number of longitudinal half- 5.2 Shell With Geometric Imperfections. Results show

waves, supercritical bifurcations arise for the stable branches 2ft3at onset of flutter is very sensitive to small initial imperfections.

and 4. In fact, recently it has been sho{#3]) that the passage In particular, asymmetric imperfections are ironed out by the
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pressurization of the shell, whereas the axisymmetric ones di@ns. The attractive solution is branch 2, and corresponds to
not. This is in agreement with what predicted for buckling ofravelling-wave flutter with and without amplitude modulations,
circular shells by Hutchinsofd4]. However, asymmetric imper- according to the stability of the simple periodic oscillation indi-
fections change more significantly than axisymmetric modes tlated in Fig. 8. In particular, for 4662p..<8373 Pa, i.e., be-
natural frequency of the first asymmetric modes, which are tit@een two Neimark-Sacker bifurcations, for 8418..<9598 Pa
most important to predict flutter boundary. and for p,,>9783 (up to the upper limit 10,000 Pa computed
Calculations have been performed with different combinatiorigavelling-wave flutter with amplitude modulations arises. The
of asymmetric and axisymmetric imperfections. However, fdiutter frequency has only small variations, similar to Fig. 4,
sake of brevity, all the results reported in this section are relatiggound 677 Hz; this value is also in very good agreement with
the shell having the following geometric imperfectior; ,, €xperimental results, as shown in Fig. 7 in refere(igd).
—0.18h, A;,,=0.0966, andA, .=2.46; all the other coeffi- A comparison between theoretical and experimental results for
cients in Eq{10) are zero. Considering thitis about 0.1 mm, the flutter with amplitude modulations is given in Fig. 9. The experi-
asymmetric imperfections are almost imperceptible and the aftental results are taken from refereric®)) where no information
symmetric imperfection, which plays a much smaller role, is confS 9iven on the values giy, andp.. for which these experimental
patible with the soldered connection of the shell to end ringdat@ were recorded. However, even if it is not possible to say that
giving deflection inwards. Calculations have been performed [jeS€ theoretical and experimental results correspond exactly to
linear piston theory and 18 modes have been used in the expJift Same conditions, it was observed that the flutter frequency
sion ofw. The expansion is the one in E@b) with the option of ¢0€S not change significantly wifiy, andp..; Fig. 9 shows that
a maximum of six longitudinal half-waves afke- 1. calculations and experiments are in good agreement.

; ; ; It seems to us that a numerical model capable of reproducing
Th lution of the linear eigenval roblem for the shell with- o . :
e solution of the linear eigenvalue problem for the shell wit uantitatively the experimental results obtained at the NASA
r%

out flow shows that imperfections having an odd number of lo X y
gitudinal half-waves slightly reduce the natural frequencies mes Research Center in 1964 has been developed for the first
me in the present paper.

modes with an odd number of longitudinal half-waves and i

crease more substantially the frequency of modes with an even

_number of Iongitu_dinal _half-waves. Moreover, imperfections_ hays  conclusions

ing an angular orientatiofe.g., described by casf)) have a sig- o

nificant effect only on the same orientation. R_esults show that the predlctlon of the onset of flutter of pres-
Figure 7 shows the flutter boundary versus the pressure difféHrized circular shells requires knowledge of the amount of axi-

ential across the shell skin for the imperfect shell. ExperimentgyMmmetric imperfections. In fact, asymmetric imperfections are

results obtained at the NASA Ames Research Center in 1988ned out by the pressure, whereas the axisymmetric ones are not.

([3,19)) are also shown for comparison. The computed results areNumerical results he_tve been ot_)talned at Mach number 3 In this

in satisfactory agreement with the experiments. In particular, ti¥&S€: the results obtained by using the linear and the third-order

onset of flutter initially increases quickly with the pressure diffefP!Ston theories are aimost identical. )
ential p,, up to a maximum. This part of the curve is associated The predicted nature of flutter was a travelling-wave around the

with a Hopf bifurcation arising from merging of the frequencies ofrcumference and the amplitude of the order of the shell thick-
modes with two and three longitudinal half-waves: these mod8€SS: 9iving mild flutter, in agreement with existing experimental
are the first to merge, i.e., to give flutter, for the imperfect shefi€Sults: In particular, both harmonic and .amplltud.e-modulated.
The second part of the curve, on the right of the maximum, tter has been predicted, m_agreemen_t with experimental data;
associated with a Hopf bifurcation arising from merging of th utter ckhgngis from h&[monl_c to ?mp“t”de'm"d“'a‘ed thr(k))ugh
frequencies of modes with one and two longitudinal half-wave \eimark-o>ac eqtoru bi urcations. It is very important to ob-
for increased pressurg,, these modes are the first to merge, a erve that the nature of the Hopf bifurcation is supercritical for all
has been obtained for the perfect shell ' “the calculations performed for Mach numiér=3. This is also in

It can be observed that the maximum of the computed curve fgreement with the experiments available that show mild super-

. - . : ic flutter with amplitude gradually increasing with the
Fig. 7 is moved on the left with respect to experiments. Actuall onic . . . . ;
imperfections should be studied on a statistical basis since datag?stream static pressufiee., with the flight speed Differently,

0

the specimens used in the experiments are not available. M I subsonic incompressible flow, highly catastrophic subcritical

over, imperfections having different numbers of circumferentiﬂ“frer:geiggﬁgxiz (’:)l;lvar):asssl?;erd\?fefgrgztgrln:ggsit[tah%Ss%ell skin has
waves with respect to the fluttering mode should be considere P

However, the imperfections introduced reproduce the experim glso been investigated in detail. The present study gives, for the
’ P P P Sifst time, numerical results in agreement with experimental data

_taI results of OI_son_ and Fung who o_t_)s_er_\_/ed thay): (i) small obtained at the NASA Ames Research Center more than three
internal pressurization was very stabilizir@) moderate pressur- decades ago

ization reduced stability to the unpressurized leyil) high in-

ternal pressure completely stabilized the shell. In particular, ob-

servat?on _(ii) was very surprising at thz_zlt _time. Thi_s Observe‘ACknowledgments
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Stress Field in Finite Width
Axisymmetric Wound Rolls

Y. M. Lee A mo_del is deve_lopec_i for predict_ing the stress field within a wound roll of wet_) material,
Associat.e Men.1 ASME in which _the radial, circumferential, transverse, and shear stresses can vary in both_ the
' roll's radial and cross-web (transverse) directions. As has been the case in previous
J. A. Wickert wound roll stress analy_ses based on one-dim_ensional r_nodels, the present approac_h ac-
o Fellow ASME counts fqr the anisotropic anq non!lnear mateylal properties of.t.he layered web material,
and the incremental manner in which the roll is wound. In addition, the present develop-
ment accounts for arbitrary cross-sectional geometry and material of the core, and the
presence of nonuniform tension across the web’s width during winding. The solution is
developed through an axisymmetric, two-dimensional, finite element analysis which
couples individual models of the core and layered web region substructures. The core’s
stiffness matrix at the core-web interface provides a mixed boundary condition for the web
region’s first layer. In several parameter studies, variations of the stress components in the
roll’s radial and cross-width directions are discussed and compared with predictions of
the simpler companion one-dimensional model. The character of the stress field at the web
region’s free edges and along the core-web interface, and the possibility of stress concen-
tration or singularity existing there, are also discuss¢BOIl: 10.1115/1.1429934

Department of Mechanical Engineering,
Carnegie Mellon University,
Pittsburgh, PA 15213-3890

1 Introduction solutions that could be expressed in the form of easily computed
. . Integrals. Motivated by applications in magnetic tape data storage,
Continuous sheets of metal, paper, polymer, and other thin I mposch[2,3] investigated the viscoelastic characteristics of

terials are encountered in diverse products and industries. S - > . h
“web” materials are flexible mechanFi)caI structures that are tran%’-OI meric substrates, and developed a linear, anisotropic, and
e-dependent model to examine stress relaxation in wound rolls.

orted under tension and at high speed during their production - - - .
Brocessing In short, wound rogllls ch:rmed arougnd a cgntral core E;E goda[4] demonstrated that the C|rcu_mfer_ent|a| stress in the vi-
' ' o ity of the core depends strongly on its stiffness. In short, a soft

(ri:)gplggolnnorr:iiglu fgﬁéu“?gcg g;’llrgonrmg?t% raggtgrrizll gsetgvrsaragy at'g re does not substantially resist the compression afforded by the
P 9 eb layers, in turn generating high compressive circumferential

transportation. g{resses near the core-web interface and facilitating defects. Con-
The stress field within a roll develops incrementally as the f'rnolly and Winarski’5] surveyed the Altmann and Tramposch for-

layer 1S wrapped onto a core, fo_IIowed by the addltl_on of rn"’m|¥‘|ulations, presented parameter studies in Poisson ratio, radial
more discrete layers. The resulting stresses determine to a la dulus, winding tension, core radius and thickness, and evalu-

extent the roll's quality, and can contribute to such failure mod ﬁﬁed such environmental factors as temperature and humidity
i .

?OS sCS éﬁ g?ggf;sn?’s'rc];enrlﬁ}éeér?;ﬁlgggai?sosl};”g% p\:\r/irg'ilsemsgﬁgocru Each of the aforementioned studies specified that the layered
and-try efforts, the roll's state of stress preferably meets certgiporon !N the wound roll had linear, albeit anisotropic, elastic

design criteria. For instance, the circumferential stress within PyoPerties. However, at the bulk level, the elastic modulus in the

. o . layered web region’s radial direction is known to be a nonlinear
web layer at a given point in the roll can be tensile or Compreﬁ])rllction of theg radial stress. Even for such seemingly well-

sive, but excessive compression can lead to local buckling. Like~ . ;
wise. desirable radial stFr)esses are large enoudah to revgnt iInderstood materials as sheet steel or aluminum, the wound roll
' 9 9 P ress problem is intrinsically nonlinear, with the roll being prop-

vidual layers from slipping relative to one another, but not so greé ly viewed as a composite, anisotropic, and nonlinear structure

as to cause surface damage. %J). Hakiel [7] and Willett and Poesc8] represented the lay-

Research pertaining to the stress analysis of wound rolls ha d ion's effective bulk radial modul | il §
rich history and has emphasized the development of o red region's effective bulk radial modulus as a polynomial func-

dimensional models wherein the core and web are each treated &2 of the radial stress, and approached the solution through finite

being infinitely wide. Those models account for anisotropic an%l rence methods, Other processes that contribute to bulk mate-
9 y : P | nonlinearity include air entrainment within the rd[l9,10)

B . N . |
nonlinear material properties, the bulk compliance of the core, ah ; . e
the roll's layered structure. Uniform mechanical properties a ¢ (lrgsperlty compliance at the surfaces of the individual web
tension across the width are likewise specified, and a key assu :

tion used in such one-dimensional models is the specification of ound roll siress analysis is also govemed by the effects of

; : ; . . .- wound-in tension loss, viscoelastic response, and the finite defor-
core stiffness being uniform across the roll's width, a restriction _.. . ' : b , f
that is re-examined here. mation of materials that are substantially soft in the roll's radial

Altmann [1] treated each web layer as an orthotropic pseg::rectlon. Good et al[11] accounted for tension losses within

- ; . .centerwound rolls of highly compressible materials due to reduced
lastic material, an vel linear wound roll model wi : . . . .

doelastic material, and developed a linear wound roll mode nterior radius. With corrected values for the wound-in tension, a
_ modified and more accurate stress model was developed based on

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF H.ak|6| S approach._ Zabaras et. 512] (.:On.SIderEd the deformation
MECHANICAL ENGINEERSfor publication in the ASVE QURNAL oF AppLiEDME-  NiStory of magnetic tape during winding and developed a hy-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 2poelastic finite element model which accounts for variable loading
2000; final revision, June 5, 2001. Associate Editor: J. R. Barber. Discussion on fgtes. Qualls and Godd 3] extended previous linear analyses of
paper should be addressed to the Editor, Professor Lewis T, Wheeler, Departmentiaf e |astic winding mechanics by accounting for the roll's non-
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi . .
be accepted until four months after final publication of the paper itself in the Asmitn€ar bulk radial modulus. Bensdi4] developed an alternative
JOURNAL OF APPLIED MECHANICS. approach to the wound roll problem by accounting for the geo-
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Fig. 2 Collocated point radial compliance of (a) hollow cylin-
r drical and (b) cup-shaped cores. The parameter values are as
specified in Table 1 (plastic ).
Fig. 1 Schematic of a finite width wound roll comprising the
inner core and wound web regions

but axisymmetric geometry, so that the modeled problem has

) ) ] ) ] somewhat greater generality than that depicted in Fig. 1. The web
metric nonlinearity that arises when web layers are highly congself has thickness, and it is wound layer-by-layer into a cylin-
pliant. In that approach, finite radial displacements within the rofjrical shape having outer rading and inner radius, common
were treated by monitoring the position of material particles usingith the core. As an incrementally layered structure, the web re-
a |ap index, rather than radius, SO.aS to mark the same mategﬁ\jn is a Composite with bulk anisotropic properties’ and is
location regardless of the deformation level. formed fromN individual layers that have been shrunk-fit onto

These modeling issues play an important part in wound rdhe another.

stress analyses, and challenge the development of efficient nuThe materials and elastic properties of the core and layered web
meri_cal method_s to predict stresses that can vary in more than g@gions in Fig. 1 generally differ. For two core designs, Fig. 2
spatial dimension. Some so-called two-dimensional wound r@lkpicts the manner in which the core’s compliance changes in the
models have been examined by HaKieb|, Kedl [16], and Cole rolI's width-wise direction. Each core has properties and dimen-
and Hakiel[17] with a view toward understanding such width-sjons as specified in Table (plastig. The collocated point com-
wise variations as the outside roll's radius, winding tension, af}ﬂiance is recorded in Fig. 2 with respect to the core’s radial
stress field due to changes in material thickness. In those viefection. The hollow cylindrical core in Fig(&) has a symmetric
width-wise variations were modeled under the assumptions thaffness distribution irz, with the compliance at the core’s free
the roll could be partitioned across its width into strips or segdges being some three times greater than at the centerline. For
ments that do not couple, and that within each segment, thf cup-shaped core shown in FighR the asymmetric stiffness
stresses and displacements are width-independent and can begafile varies nearly tenfold between the closed and open ends. To
culated through a one-dimensional analysis. the extent that the core’s compliance establishes one boundary

The wound roll examined in the present study comprises coggndition that is afforded to the layered web region, it is problem-

and web regions of finite width, as depicted in Fig. 1. Aside from

core stiffness, the winding tension, material thickness, and elastic
properties can in principle also be nonuniform. Such realistic at- ) . .
tributes are not captured in a one-dimensional model, and it is afC/e 1 Baseline parameter values used in the case studies

objective of this investigation to develop the methodology to as- ©°¢

sess their importance. To the extent that the radial compliance of| Modulus, £ 3.5 (plastic) | GPa
the core varies along the axis of its generator, the innermost web 70 (aluminum) | GPa
layer is subjected to a stiffness boundary condition that varies - - 043 (ploctic) | —
across the web’s width. In what follows, by accounting for differ- | Feissonratio: ¥ S
ential core compliance, transverse stress, and shear stress, th 0.33 (aluminum) | —
model is capable of predicting the manner in which the wound | Outer radius, 7 25.0 | mm
roll's stress field varies in both the roll's radial and cross-web | wideh, w 12.7 | mm
directions. In several parameter studies, the extent to which - ko, £ 95| mm
stresses vary in the cross-width direction is discussed, and the
results are compared with those obtained from the simpler one-
dimensional model. Of further interest are the character of the vy,
stress field at the web’s free edges and along the core-web inter- -
face, and the possibility of stress concentration or singularity ex- | Tension, T Ll
isting at those points. Number of layers, NL 3000 —
Width, w 12.7 | mm
2 Core and Wound Roll Model Thickness, h 10.0| pm
2.1 Geometry and Boundary Conditions. Figure 1 depicts Bulk modulus, E, (jo;| < 4 MPa) | 10]o,* = 1200, [* + 590/o,| + 7 | MPa
a prototypical roll of finite widthw which is formed by winding Circumferential modulus, Ep 7| GPa
continuous web material at specified tensioonto a core. Shown Transverse modulus, E, 9| GPa
illustratively in Fig. 1 as a hollow cylinder, the core has inner - modulus, G, 100 | MPa
radiusr;, wall thicknesst, and coordinates— #—z centered in -
the roll. In what follows, the core is treated as having an arbitrary |_Foisson ratio, ve. = ver = v 03] —
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N

w(r,z) are the radial and transverse displacementg/jrrespec-

Linearly Nonlinearly tively. The stress field is determined through the method of
slastic s weighted residuals, and the weak form of the equilibrium condi-
leTe tions is given by the volume integral
i q NR
i T 5 f uTAudWw=0 1)
i ] o w
" : 4 O, Z Og
% P, B ¢ g o NZ ‘Q?,ht which provides governing equations ovéV, the rectangular
§ g L — o ~-> cross-sectiond={(r,z):r.<r<r, and —w/2<z<w/2}, and the
E T o, boundarySA={(r,z): r=r or r=r, and —w/2<z<w/2}U{r,
———T] % <r<r, andz=*w/2}. Those conditions become
L P2
! x_ A 1 Oy 1 -
Core, ¢ S jwﬁu F(ro'r)’r* T+Urz'z) +&N(F(r(7rz),r+oz,z) dw=0
To 2
or

Fig. 3 Axisymmetric finite element model used to determine
wound roll stresses o, oy, o,, and o,,, shown illustratively

for a hollow cylindrical core 27TJ SU((roy) ;= o+ 10,,)+ow((ray,) +ro,,)dA=0,
A

®)

atic of one-dimensional wound roll models that such gradients aadd

their influence on the roll’s stress field cannot be captured.
Stress components, , o4, o,, and o, within the core and

web regions are each functions mandz and equilibrium solu-

tions are subject to certain displacement and traction boundary

conditions. For instance, rigid-body motion of a hollow cylindri-

cal core is suppressed by specifying that transverse displacement +(‘>\N),r))d-’4_277j (Su(oyn;+ o Nz) + SW(a Ny

vanishes at the center;(0) of the inner core’s surface. As each oA

!ayer is added to the roll, traction conditions over the boundary are +o,n,))rdsA=0, (4)

imposed as follows:

u
T +roy( ‘)\N),z"' ro'rz((‘su),z

27Tf (rUr((SU)'r‘i‘rO’g

 inner core surfacea =r;, ze[—w/2w/2], and z#(r;,0): or
o, =0;=0,

« upper and lower core surfaces =w/2 andr e[r;,r.]: o, ij (8€'o)rdA—27 | (su™rdsA=0 (5)
=0,,=0, A SA

e upper and lower web surfacess =w/2 andr e[r¢,r,]: o, T . .
=0,,=0, where n={n,,n;}' is the unit normal, strains e

« outer web surface =r, and ze[—w/2w/2]: o,,=0 and =1{€ €€ ¥}, stressesr={o;,04,0,,0,,}", and tractions
o, =TI(w(r.+(n—=1)h)) t:{Crrr‘lr'%o'rznzxo'rznr"'Crznz}T-
) i ] Equation (5) is discretized locally by using four node, rec-
wheren (1=n=<NL) is the integer index of the current layer, andangular, axisymmetric finite elements, each having eight degrees-
NL is the total number of layers on the fully formed roll. of-freedom. The displacement field within each element is

2.2 Substructure Stiffness Matrices. In order to account 9'Ve€n
for realistic core geometry and designs, the wound roll is se
rated into substructure€={(r,0,z):r <r.,0< <2, —w/2<z 4
<w/2} over the core andWV={(r,0,z):r.<r<r,0<0<2m, ue:z N.
—w/2<z<w/2} over the layered web region, as indicated in Fig. =
3. Each substructure is discretized locally through finite element,
and they couple through the interfacial core-web stiffness matriix terms of shape function;=(a=(r —ry,))(b=z)/(4ab) and
Kc . Unit loads are applied sequentially to those nodes in the catiedal displacementaf:{ufwf}T. Herer,, 2a, and 2D are the
substructure’s model which are located along the core-web int@fiean radius, width, and height of each element, respectively, as in
face, and the corresponding nodal displacements are recorded Higr. 3. The discretized5) then becomes
version of the flexibility matrix so obtained, formed of displace-
ment vectors irr andz, provides matrixK of dimension 2NZ NE .
+1)X2(NZ+1), whereNZ is the number of elements allocated 2 uP (wa B[(D;(Ba’— €y) + o) d.A®
in zalong the core’s axis. Because of the potential variety of core i=1 A°
materials and geometr¥¢ is analyzed by using a commercial
finite element package. In that manner, the present method is ap- _27Tf NiTtird 5Ae) =0 7
plicable to designs having arbitrary shape znand isotropic, SA°
orthotropic, or anisotropic material properties. For illustration in . .
the case studies which follow, two prototypical core designs-WhereNE=NRXNZ is the total number of elements witiRin
cylindrical and cup-shaped—are considered, each having isotroffi€ radial directionD; is the elasticity matrixB;={d}{N;} is the
properties. derivative of the strain-displacement relations withd]

In terms of the layered web region, the equilibrium require=[9/Jr,0;1k,0;04/9z;0/9z,9/or], and€y andoy; are the initial
ments, constitutive equations and conditions of compatibility afdrain and stress in thieh element.
represented in terms of the displacement field{uw!™ as Au Sincesuf in Eq. (7) is arbitrary, solutions satisfita’=f in
=0, whereA is a matrix differential operator, and(r,z) and terms of the & 8 elemental stiffness matrix

a

=

©)
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with the measurement of corresponding displacements or strains
KFZZWJ B/D;B;d.A° (8) in #andz In practice, however, such compression plate fixtures
A invariably restrict in-plane expansion through frictional contact.
and the 81 elemental load vector Thus, conventionally in the analysis of wound roll stresses and

with an acknowledged view towards expediengy, and v,, are
ff:zﬁf NTtrd 545+ 27,] B;rDiGOidAe_z'n'f B oo d.A°. approximated on the basis of a material symmetry condition. Spe-
5A° e 42 cifically, to the extent the roll deforms elastically and in a path-
(9) independent manner,

As the nth layer is incrementally added to the roll, thén21)

(NZ+1)X2(n+1)(NZ+1) stiffness matrix ovenV is determined i E — E vom oy 2 (10)
throughK,,==N_ K¢, prior to the specification of boundary con- TR, Tt TEE, TR TR

ditions. Likewise, the 2f+1)(NZ+1)X1 vector of nodal loads ) ) ) o
becomesF=3N ¢, Summation here indicates the assembly dhe latter of which can be directly measured in principle. For the
=1 M mple polymeric material in Table 1, these conditions provide the

elemental matrices or vectors by the addition of overlapping termi&

at adjoining nodes, which requires a connectivity matrix relatinﬁpprox'mat'ons”zf0'233' and av, =1 MPa compressiony, ,

the local elemental nodes to the global structural ones. The proQ;021 andv;;=0.016. However, because of interlayer slippage

cedure is described in detail by Zienkiewicz and Tayltt8]. The and other effects, real web materials and rolls exhibit some degree

structure-level stiffness matrix of the entire wound rRlihaving ©f @symmetry along the loading-unloading path. As a result, the
boundary conditions as specified above becotfes Ko+ Ky condition(10) is not strictly applicable and should be viewed as a

where assembly of the matrices corresponding to the interfacﬁi]ysmall.y motivated apprgximation. In_the quthors’ measurements
nodes along =r is implied on certain polymers, for instance, at identical valuesrpf E,
c .

In this manner, the equilibrium conditions are expressed by tl\{@lues_which c_iiffer by 50-100 percent between the loading and
system of simultaneous nonlinear algebraic equatikpéa)a unloading portions of a compression test have been observed. To

=F. As discussed in the following section, nonlinearity arisege extent thag, is already typically much smaller tha, and

N : ¢, thev,, and v, values calculated through EQLO) are like-
zolgv(ttt]g stress-dependent bulk properties ¥ namely K wise small, and Bensofl4] has suggested specifying ,= v,,
).

~0. On the other hand, aside from the small differences in nu-

2.3 Web Region Elasticity Matrix. The elasticity matrix merical values between application of tfggiestionablgmaterial
D; for each element within VW is an important aspect of the symmetry condition and the specification (afbitrary) small val-
wound roll stress model. With each layer or group of layers haues forv, , andv,,, application of Eq(10) does have the pleasing
ing polar orthotropy, some ten material constants—magyland attribute that mathematical symmetry Ky, is preserved. On bal-
E,, bulk radialE, , and bulk shea6,, moduli, and Poisson ratios ance, and from that standpoint of computational efficiency,
Vozs Vors Vars Vzgy Vig, @andv,,—are needed to specify proper-the material symmetry condition is used here in determining
ties in the web region. Even for typical, not to mention exotio,,, v,,, andv,,, even while recognizing the limitations of that
materials, numerical values for those parameters are known wéthproximation.
varying degrees of certainty, and it is problematic to estimate With respect to the shear modulu§,, can in principle be
some of the parameters. For instance, the mdap@ndE,, and determined experimentally by loading a stack of materiakzin
ratiosv,, andv,,, can be readily measured. Since parametgrs under prescribed compressive stress, in conjunction with an angu-
and v,, relate in-plane loads to out-of-plane displacements, thégr distortion. The value so measured would be valid up to the
are challenging to measure for an already thin web layer. Tip@int at which interlayer slippage began. Lacking such available
specific E,(o,) dependence can be determined experimentaligeasured data fdg,, in the literature, in case studies he@, is
through standard compression testing of a stack of web matesalecified to be constarfit00 MPa near the valug130 MPg
having representative dimensio(i$§,8]). By fitting a polynomial E,/(2(1+v,,)) at o,=—1 MPa. Subsequent parameter studies
curve, for instance, to the measured data, a functional expresswith various values oG,, in the range 25 400 MPa have dem-
for the bulk-level radial modulus can be obtained. onstrated that the wound roll stresses are generally insensitive to

Accurate numerical values for ratios, andv,,, however, are G,,, with variations less than five percent, except é95 which
generally not available. Their measurement requires the applicaries withG,, in a substantially proportional manner.
tion of compressive forces across the layer’s thickness dimensionWith these considerations in minB; becomes

Er(l_Ez/EH)Vgg (Egvrot Ezvizvgn) Ex(vrovrz) 0
Ey(1—(E./E)vf) EfEwy+Egvv)/E, 0
D;=C, 5 (11)
E,(1—(E4/E;)viy) 0
Symmetric G,,/Cy
[
where Taylor expansion is used to linearize about either an initial esti-
. 5 5 mate atn=1 or the converged reswt obtained from a previous
Co =1-2 E/E)vigVorViz— Vi ( E,/E,)— Vaz(Ez/Ee) iterate.
2 £ IE 12 Computation begins by evaluatiri¢; at an initial estimate of
—vrg(E/Er). (12) the stress field. In the first iteration, the nodal displacements be-

2.4 Computation and Iteration. The equilibrium equations comea,=Kg*(a*)F. The vector of imbalanced nodal loads in the
are writteng(a) = Kg(a)a— F in terms of the nodal displacements second iteration becomesf,=Kg(a)a;—F. The incremental
and roots are found through Newton-Raphson iteration. As ea@hdal displacementsAa in the second iteration areda,
layer or group of layers is added to the stratifidd a truncated =K§1(a1)Af2, and the cumulative displacements at that stage
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becomea,=a;+Aa,. Generally, at thgth iteration, the imbal- 0 , , , ' -

anced load, incremental displacement, and cumulative displa«ﬂ;-’ =77
ment fields are calculated through o1k e i
g \\\\ ‘_””//f’
Af 1 =Kg(gy)a—F (13) 3 -2+ R - -
&
_ -3 1 .
Aaj, 1 =Kg'(a)Afj 4 (14)
aj+1=aj+Aaj+1. (15)

For each system of locally linearized equilibrium conditions,
preconjugate gradient method is used to determineAtige and
convergence is identified by evaluating the norny
=(ZAa?/zal)* If nfalls below a specified tolerance, say £0
as in the case studies below, iteration is terminated.

With the nodal displacements so obtained, the stresses witlg s . . .
elementi of the wound roll are incremented by 25 30 35 40 45 50 55

Radial position r, mm

ferential stress A MPa

ircumd

C

A 0y, =D;i(Bija — &) + oy (16) Fig. 4 Comparison of the radial and circumferential stresses

; : along centerline z=0 as determined through the present (——)
as thenth layer is added. In turn, the cumulative stress and one-dimensional (- Hakiel [7]) models. The parameter

values are as specified in Table 1  (plastic, hollow core ).

O, = O(n-1)i + Aoy, 17
is represented in terms ef,; and the stresses;,_ 1) developed
by the first through f— 1)st layers. nite plate, the strength of the singularity depends on the ratios of
the (differing) material properties of the inclusion and the sur-
3 Comparisons and Convergence rounding material[20]).

. . gundurs[zﬂ demonstrated that the influence of the elastic con-

Results obtalne:d fror_n the present analysis are bench_marks@ nts for two isotropic edge-bonded materials is set by the two
against the one-dimensional model of HaKig], which does in- variables =(E —E)/(E +€) and B=(u1(kp—1)— ol

clude the effects of nonlinear radial modulus and uniform coré a=E1mE)iE™ =2 B=(plxz M2l K

compliance. Parameter values are as specified in Table 1, and fop))/ (#a(ka+ 1)+ ua(xy+1)), where E;=E; and kj=(3

_ 2 —
a hollow cylindrical core, Hakiel's “effective core modulus” was ~ ¥j)/(1+»j) for plane stress oi;=E;/(1-»j) and «;=3
calculated through —4v; for plane strain. In that formulatiorg;, »;, and u; (j

=1,2) are the elastic moduli, Poisson ratios, and shear moduli, of
the two edge-bonded regions, and the corner stress is character-
E(l—(rc—t)zlrﬁ) ized by the numerical value of the determinant quantitf
= 2.2 (18) —2p). For strictly positive values, stresses at the corner are sin-
(I+v)(re—t)rg+(1—v) e ; :
gular at orderp™*; for strictly negative values, the stresses are
whereE and v are the core’s modulus and Poisson ratio. Asideinite and nonsingular; and for vanishing determinant, the stresses
from discretization, in Hakie[7] equilibrium is only approxi- can be singular of order lgg depending on the applied loads
mately satisfied sincg, is calculated based on the stress state #s19]).
the previous, not the current, layer was added, and is specified td-or anisotropic materials, the character of the free-edge corner
be a constant as each layer is added. For slightly greater accuraggsses in ideally bonded quarter-spaces of dissimilar materials
here, the modulus is calculated based on the stress state athi&ie been investigated by Wang and C[22,23. That solution
current iteration. was developed through Lekhnitskii stress potentials, and an eigen-
A comparison ofo, and o, for the two solutions is shown in function expansion was developed to obtain the stress field near
Fig. 4, where values calculated along the roll's centeriind are the free edge. Alternative approaches have included enriched fi-
shown for the two-dimensional modéNR=100 andNZ=80). nite element and boundary integral methods which offer compu-
The two-dimensional model, which does not assume conditionstational efficiency([24]). The nature of the free-edge corner stress
plane strain or neglect Poisson coupling as does the ornagularity in composite laminates remains an open issue, and the
dimensional model, predicts larger values of the radial stress pyesent two-dimensional model can be viewed as a tool for ex-
some 15 percent, with peak values-e1.76 and—2.02 MPa for ploring the presence of stress concentration or singularity at the
the two models, respectively. The maximum occurs in each casdges of the core-web interface.
nearr=32mm. In terms ofo,, the two solutions are in close With solutions here based on finite element, the presence of a
agreement along the centerline with maximum deviation at tiéngularity is only suggested by high stress gradients and/or slow
core-web interface of less than ten percent. convergence rates under successive mesh refinements. Such cal-
In a one-dimensional model, no free edge exists along the cotedations identify whether stresses converge uniformly at edges of
web interface, and in particular, no free surface of dissimilahe core-web interface and enable stress concentration factors to
bonded materials exists, as is the case in a two-dimensional modelquantified, or whether the stresses do not converge or converge
(points P2, for instance, in Fig).3For linear, isotropic, homoge- slowly, in which case singularity is possible. For properties as
neous materials, such configurations are associated with stregecified in Table 1, Fig. 5 depicts convergence pfn the roll’'s
concentration or even singularity, and the corner stress can firet layer for the cases of plastic and aluminum cores. In each
non-singular, or of ordep™, or logp, where p is the radial case, the radial stress converges quickly at pointZ21Q() in Fig.
distance from the corner and is an exponent, depending on3, and for the plastic cores;, also converges bilZ=40 at points
material properties and the type of loadi(i@9]). In addition, in P2 (z=*=w/2), namely, edges of the interface. However, with an
related problems of elastic inclusions within a half-space or infaluminum core, the radial stress at P2 has not converged with
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Fig. 5 Convergence of ¢, at points P1 and P2 in Fig. 3 for (a)
plastic and (b) aluminum cores. The radial stress converges
well along the roll's centerline in each case, and at the edge of

the core-web interface for the plastic material.

Fig. 7 Surface and contour representations of the radial and
cross-web variation of o,; NR=100, NZ=80. The parameter
values are as specified in Table 1  (plastic, hollow core ).

) ] ) _ 4 Discussion and Further Applications

successive mesh refinements evenNat=160. This material-
dependent behavior is analogous to that observed in studies ofi.1 Stress Field With a Hollow Core. Figures 7-9 depict
other edge-bonded regions. variations of the four stress components as functionsasidz for

When stresses are finite and converged at P2, stress concertravound roll having hollow core, dimensions, and properties as
tion factors between the roll's nominal centerline stresses agpecified in Table 1. In Fig. 7, the maximum compressive radial
those at the core-web interface’s edge can be identified. The crosfsess of 1.89 MPa occurs €81.6£6.35 mm. The cross-width
web variation ofo, in the first layer is shown in Fig. 6 for both variation of o, diminishes with radial distance from the core. In
plastic and aluminum cores. In Fig(a for the hollow plastic the regionr =25~30 mm, for instance, the cross-width variation
core, the stress at the edges is sdfe1.22 times greater than in o is greater than ten percent. For the inner 58 percent of the
the centerline value, which could be a useful quantity in analyzirigyered region, the cross-width variation is greater than five per-
wound roll defects. In Fig. @), the shaded zones denote the&ent but becomes smaller at larger distances from the core in
regions where the stresses have not converged to three significstordance with St. Venant's principle.
digits atNZ=160. Even in that case, however, the influence of the The circumferential stress is tensile B, vanishes near
potential singularity is localized since the stress solution has sa&35mm, and is compressive at radial locations nearer to core,
isfactorily converged over 90 percent of the roll's width. and with negligible cross-width variation. In an axisymmetric

structure,o, depends only on radial displacement, which in turn

-0.8 T T T
(a)
z
1.22
s _L
E 10
13 1 1 &
o =
2 H
173 -l
o o
g g 0
2
= 2.8 T T 5
B 173
g (b) =
E=1
LA
£ Ui
LR R
o LR P
= R,
\\ g ""’Z‘Z"ZZ'Z"Z‘ZZ'
ag 0y 0y
-20 4 Qi i
1y 0y
iy
-3.3 ! ! 55

-8 -4 0 4 8

Cross-web position z, mm 35

s T
> ® Radish posit®

Fig. 6 Cross-web variation of o, along the core-web interface
for hollow (a) plastic and (b) aluminum cores; NZ=80 (OOO0),
and NZ=160 (——). The shaded zones in (b) denote regions Fig. 8 Surface and contour representations of the radial and
where the stresses have not converged to three significant cross-web variation of o,; NR=100, NZ=80. The parameter
digits. values are as specified in Table 1  (plastic, hollow core ).
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Fig. 9 Radial and cross-web variations of  (a) o, and (b) o,,;
NZ=80 (surface ) and NZ=160 (OOOQ; first layer only ). The
parameter values are as specified in Table 1  (plastic, hollow
core).
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Fig. 11 Surface and contour representations of the radial and

cross-web variation of o,; NR=100, NZ=80. The parameter
values are as specified in Table 1  (plastic, cup-shaped core ).

o,, are highly localized, their solutions have converged in Fig. 9,
where results foNZ= 80 (surface are compared in the first web
layer with the results foNZ=160 (data points

In the foregoing analysis, adjacent layers are assumed to remain
in contact with no lateral slippage. With an assumed coefficient of
friction of, say ©=0.3, that assumption can be re-examined by

is almost uniform for the chosen core design and with Umfo”@omparing the magnitudes of,, and wo, . Over the entire web
winding tension. The maximum compressive valuedgrof 10.9  qomain,, is smaller, providing internal consistency at least with

MPa occurs at the core-web interface.

respect to this no-slippage assumption.

In Fig. 9, the transverse and shear stresses are significant only
near the core-web interface, and rapidly fall to almost zero else-4.2 Stress Field With a Cup-Shaped Core. When the core
where. The localized character af and o, is attributed prima- is cup-shaped with wall thickness, width, outer radius, and plastic
rily to Poisson coupling in the core. Away from the interfacematerial properties as specified in Table 1, Figs. 10 and 11 depict
Poisson coupling is negligible becausg andv,, are small, and the radial and circumferential stresses as functions afidz. In

the stresses are likewise small. Although the solutions-foand
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\

T

Radial stress o_, MPa
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G,
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We, b
35

. 1,
® a0

O, 5

&

Fig. 10 Surface and contour representations of the radial and
cross-web variation of o,; NR=100, NZ=80. The parameter
values are as specified in Table 1  (plastic, cup-shaped core ).
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the roll’s first layer, the compressive radial stress varies between

25% 50% 100%

T

Radial stress o_, MPa

Circumferential stress Oy MPa

25 30 35 40 45 50 55

Radial position r, mm

Fig. 12 Variations of o, and o, along the roll's centerline with
increasing numbers of web layers: 25 percent, 50 percent, and
100 percent of a full roll;, NR=100, NZ=80. The parameter val-
ues are as specified in Table 1  (plastic, cup-shaped core ).
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Radial stress o; Circumferential stress o of significant cross-width variation. In each casg,varies further

635 from tension to compression across the roll's width.

5 Summary

The width-wise variation of stresses in wound rolls is investi-
gated by using a two-dimensional, axisymmetric, finite element
model. The present analysis relaxes assumptions made in previous
one-dimensional models in which the roll was specified to be
infinitely wide and with uniform core stiffness, winding tension,
and material properties. By separating the wound roll into two
regions—the core and layered web substructures—general core
geometry and designs can be accommodated, analyzed, and
optimized.

In several case studies with different materials and core geom-
etry, the radial and cross-web variations of the ¢4, o,, and
o,, stress components, as well as stress concentration or potential
singularity at the free edges of the core-web interface, are inves-
tigated. The transverse and shear stress in these examples are sig-
6.35 nificant only near the core-web interface and are attributed to

2 3 45 5% 3 45 5 Poisson coupling and strain mismatch between material proper-

Radial position r, mm ties. The model can be used for quantifying stress concentration at
edges of the core-web interface, and for identifying material com-
binations and core designs for which certain stress components
are expected to be finite or singular. The model can further be
applied to investigate the stress state in the presence of nonuni-
form winding tension or material thickness across the web’s
width, and those areas are subjects of current investigation.

25% 0.0

6.35

-6.35

50% 0.0

&%f&

6.35

Cross-web position z, mm

-6.35

100% 0.0

Fig. 13 Radial and cross-web variations of o, and o, with in-
creasing numbers of web layers: 25 percent, 50 percent, and
100 percent of a full roll; NR=100, NZ=80. The parameter val-
ues are as specified in Table 1  (plastic, cup-shaped core ).
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1 Introduction does not affect the deformation theory of MSG plasti¢jityl,12)

. . either since the theory assumes material incompressibility.
Fleck and Hutchinsofil] proposed a phenomenological theory™, = 2y 0o decomposition of the strain gradient tensor is

of strain gradient plasticity in order to characterize the size depen- osed in this stud
dence observed in the micron and submicron scale experimeﬁ'ﬁgp Y

([2-9)). The strain gradient tensaf;;=uy ;; is decomposed into ﬂijkzﬁﬁﬂk, 2)
a volumetric partnfj‘k and a deviatoric part, 77ijk=7l”k
+ 7, where uy is the displacement, and;i'?k=1/4 (Sikjpp
+ Sk mipp) ([10]). Within the same theoretical framewo(KL]),

which gives a vanishing deviatoric pa_ytjk for an arbitrary volu-
metric strain field. The theory of MSG plasticity11,12)) is then

) ‘o._generated accordingly to include the elastic deformation. Finally,
Gao, Huang and co-worke(§l1,12) developed the mechanism we study the crack-tip field with the elastic-plastic theory of MSG

based strain gradientMSG) plasticity theory from the Taylor . ; ;
model in dislocation mechanics, and the theory agrees very mtg!gsgg:}gr:ﬂgoft;?r\%mﬁt;he stress field around the crack tip has

with the micro-indentation, microtorsion, and microbend experi-
ments([13,14)).
Hwang and Inou¢l5] investigated the strain gradient effect for

the following displacement field: 2 Decomposition of the Strain Gradient Tensor
ule(xi—xg—xg)—kZBxlxz—k 2Cx;X3, Becaqse the strain gradient tensor can be expressed. in terms of
the strain, 7 =g j+ &jx,i—&ij x,» @ natural way to define the
Up=2AX1Xo+ B(—x§+ x%—x§)+20xzx3, (1) deviatoric strain gradient is to replace the strain by its deviatoric

parte’ (=e;; —1/3e ;i) in the above relation, i.e.,
Us=2AX; X3+ 2B XpX3+ C(— X2 — X5+ X3), ne !

) . ) M= €k, T ki~ Eij ko )
whereA, B, andC are constants. It gives a pure volumetric strain ) ) o
field, s;;=2(Ax;+Bx,+Cx3) & , i.e., the deviatoric strain field which clearly vanishes for a purely volumetric strain fig¢édg.,

Si'j vanishes. The strain gradient field, however, is not pure V0|l(,lj-'):|' The corresponding volumetric part of the strain gradient ten-

metric because the deviatoric strain gradient field does not vanisf! becomes
ni’jka&o. It is quite puzzling that a pure volumetric strain field . 1 1 1
gives a deviatoric strain gradient field because the former implies ~ 7ijk = 7ijk — ﬂijkzgspp,j5ik+ §8pp,i5jk_ §8pp,k5ij G

no plastic deformatioisince plastic deformation is always devia-

toric) while the latter represents the plastic deformation associatéfie above decomposition is different from the existing strain gra-
with the geometrically necessary dislocatidfsl]). It should be dient theories([1,11,13), and it ensures that the deviatoric and
pointed out that the above puzzle between the volumetric strai@lumetric part of the strain gradient field result from the devia-
field and deviatoric strain gradient field does not apply to the flof@ric and volumetric strain fields, respectively.

theories of strain gradient plasticity1,16—19) because of the ~ The higher-order stress, which is the work conjugate of the
clear distinction between the plastic strain and the total strain.strain gradient tensor, is decomposition differently,, :E*j'k

+ i, such that the virtual work done by the higher-order stress
can be separated into the hydrostatic and deviatoric parts

1To whom all correspondence should be addressed.
Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF W=7 67k :?{j‘k 5Zi'?k + Tk O - (5)
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Januari his requires the cross terrﬁﬁk 57”'( and ?ijk57i?k to vanish,
18, 2001; final revision, July 18, 2001. Editor: M. Ortiz. Discussion on the pap H R i iy H ~
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mechan?&rlu(:h gives the unique decomposmon of the hlgher order stress
Engineering, University of Houston, Houston, TX 77204-4792, and will be accept
until four months after final publication of the paper itself in the ASMBEJBNAL OF — —H
APPLIED MECHANICS. Tijk = Tijk ~ Tijk » (6)
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~ | MSG plasticity
B Classical plasticity
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Fig. 1 The effective stress o, normalized by the uniaxial yield stress oy
versus the normalized distance to the crack tip, r/l, ahead of the crack tip,
where [ is the intrinsic material length in strain gradient plasticity; the plas-

tic work hardening exponent  N=0.2, Poisson’s ratio »=0.3, the ratio of yield
stress to elastic modulus o/ E=0.2 percent, and the remotely applied elas-
tic stress intensity factor K,/ oy /Y?=20

a1 1 1 K o
7'iik:§5ik Tipp™ 5 Tpp] +§5ik Tipp™ 3 Tppi |- 7 Tij =15 ﬁ(5ik7/jpp+ Sik Mipp) + ;(Aijk_nijk)
Unlike other strain gradient theorigkl,11,17), the decomposi- o2 f(e)f'(e)

tion of the higher-order stress;, is different from that of the
strain gradienty;y, .

p ijk [+ (12)
whereK is the elastic bulk modulusr is the flow stress ir{8);

3 The Elastic-Plastic Theory of Mechanism-Based o

Strain Gradient Plasticity A= (2775 + i+ i) Hijk:%(ei’kmmn+sj/k7i'mn);
Let o= 0 f(e) be the uniaxial stress-strain relation, amgs (13)

be a reference stress in uniaxial tension. The flow srdadVISG ) o . .

plasticity is established from Taylor model in dislocation mechare =10(x/ov)b, andoy is the initial yield stress in uniaxial ten-

ics as([13]) sion.

o= o f(e) +18a°u?by=oef2(e) +17, (8) 4 Crack-Tip Singularity in MSG Plasticity

wheree = \/2/3¢{j &} is the effective strainu the shear modulus, We use the finite element method for the elastic-plastic theory
b the Burgers vectorg (0.1~0.5) an empirical material constantof MSG plasticity to investigate the mode | crack-tip field and
in the Taylor dislocation model, and the effective strain gradignt crack-tip singularity. A semi-infinite crack in an infinite elastic-
is determined by three dislocation modé]41]) for an incom- plastic solid remains traction-free on the crack face. The el&stic

pressible solid asy=1/2\/7/; 7. Here the deviatoric strain gra- field is imposed on the remote boundary. The plastic work-
dient tensomi’jk is the same asy), in (3) for an incompressible hardening exponerii=0.2, the ratio of yield stress to Young's

solid, therefore a natural generalizationpfor an elastic-plastic Modulus oy/E=0.2 percent and Poisson's ratic=0.3. Details
(compressiblesolid is of the numerical analysis are omitted in this paper.

Figure 1 shows the normalized Von Mises effective stress,

1 —— o.loy, versus the nondimensional distance to the crackrtip,

7= 5 N Mijk Tijk- (9 ahead of the crack tip, wherey is the yield stress antis the
) ) o ) ) _intrinsic material length in strain gradient plasticity. The results
The parametet in (8) is the intrinsic material length in strain gre presented for both the elastic-plastic theory of MSG plasticity

gradient plasticity given by and the classical theory of plasticitize., without strain gradient
w2 effecty. The remote applied stress intensity factorkis/ oyl /2
|218a2(0_—) b, (10) =20. The horizontal line ofro/oy=1 separates the elastic and
ref

plastic zones. Outside the plastic zone, both curves emerge to the
which is on the order of a few microns. same straight lines with the slope efl/2, corresponding to the
Following the same multiscale approahl]), we have estab- elasticK field with the square-root singularity. Within the plastic
lished the constitutive law for the elastic-plastic theory of MS@one, the two curves are also essentially the same at a distance
plasticity based on the alternative decomposition of the strain glarger than 0.Ato the crack tip. Within 0.Ato the crack tip, MSG

dient tensor in2)—(4). plasticity theory predicts significantly larger stresses than their
counterparts in classical plasticity. Moreover, classical plasticity

o= Kewd: + 2—03-’- (11) theory gives a straight line with the slope 6N/(N+1), corre-

i kKT 3g Tl sponding to the HRR field 20,21]), while MSG plasticity theory
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gives another straight line of slopel/2, corresponding to the [4] Fleck, N. A, Muller, G. M., Ashby, M. F., and Hutchinson, J. W., 1994,
square-root singularity. In other words, stresses have the square- “Strain Gradient Plasticity: Theory and Experiments,” Acta Metall. Maté2,,

. . L L. pp. 475-487.
root smgularlty around a crack tip in MSG plaStICIty' [5] Lloyd, D. J., 1994, “Particle Reinforced Aluminum and Magnesium Matrix

. Composites,” Int. Mater. Rev39, pp. 1-23.
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Normal Indentation of Elastic
«.r. | Half-Space With a Rigid
. | Frictionless Axisymmetric Punch

A. Chandra
Engel Professor Fellow ASME

e-mail: achandra@iastate.edu The contact of a simply connected axisymmetric punch with an elastic half-space is
examined. The problem is mathematically formulated by using potential theory and com-
Department of Mechanical Engineering, plex variable analysis. The final solution of these equations is obtained by assuming a
lowa State University, polynomial punch profile. The conditions for complete contact and incomplete contact are

Ames, 1A 50011 also derived. The solutions give the pressure profile at the peeleitic half-space in-

terface for any polynomial punch profile, even for noninteger power polynomials, as long
as the contact region is simply connected. The results show that some classic solutions in
linear elasticity are special cases of the derived solution and determine the range of
validity for those solutions[DOI: 10.1115/1.1445145

1 Introduction the punch edgésee Johnsof6]). To solve conical punch prob-

L lem, Love[7] used potential theory and Sned used integral
Contact pressure distribution between two surfaces has alW?yfnsform [rrgethod E)o get the sar%e result. Tcr{:g/ found th?at there

been of great interest to engineers. Perhaps the most widely u@?fgts a logarithmetric singularity at the conical tip, and their so-

equation for bearing appllcatlon IS Hertzs .solu.tlon.. Boussmquﬂons are also for incomplete contact. For circular annular punch
SOIUt'On. for flat-ende.d pu.nch. fmds Its appllcatlon in the safe roblem, Collins[9] used potential theory and superposition
evaluation of foundations in civil engineering. Recently, researc ;

qL 4 Snedd lution ical bt | 1ethod to obtain the solution.
ers used Love and Sneddon solution for conical punch 1o €xp amPopov [10] shows: If a normal pressure distribution on the

nanoindentation experimental dagg., Hay et al[1). In elastic ,12ne7— 0 over a circular area with radius has a square-root
emission machiningEEM), the material is removed through thesingularity at the edge and is in the forRry,[ (1—r2/a2)2)/(1
atomic scale elastic fracture without plastic deformatisee Ko- 2/22)12 where P is the L q n | ial then th
manduri [2]). Indentation model for different particle shape is 'al)d' V‘ll ere Pp(x) ISh el eggn re pho ynom;a, en _"e
needed to investigate this process. The material removal rate ffi |cal displacement on t ezp?'ﬂ? over the circular area wi
chemical mechanical planarizatiog@ MP) of silicon wafer largely be_ proportional tcPq[ (1-1%/a%) "], which is an even polyno-
depends on the pressure distribution on the wafer suffacand mial. . . e . .
Chandrg 3]). Shield and Bogy4] investigated the indentation of In this paper, we consider a rigid frictionless axisymmetric
a flat-ended punch into layered elastic half-space. Their soluti Hn.Ch .W'th a polynomial proflle and axis of revoluthn as the
Qxis, indenting normally into the plare=0 of an elastic half-

may be used in the evaluation of protective coating to prevent th / . o .
substrate from wear under sliding contact. spacez=0. The problem is considered in linear theory of elastic-

When a rigid axisymmetric punch indents normally into ally and the elastic half-space is assumed to be isotropic and ho-

elastic half-space, there are two possibilities: one is that the wh{JiPgeneous. The punch is assumed to be rigid with sharp comers,

punch surface contacts with the half-space: the other is that o fich may lead to singularities in the contact pressure at those

: . rners. The problem is solved by using potential theory and com-
part of the punch contacts with the half-space. Following the te lex variable analysis. Green's solutiphl] is utilized and with

minology by Gladwell[5], the first contact is called complete or hle aid of mathematical softwarMATHEMATICA (Wolfram
bonded, and the second one is termed incomplete or unbonde '15]), the final solution is obtained. Also, the conditions for the

tbhoe nsggrongf fhaesgér:?aectcrzmii(r:]t ggenis?éfe \(’:V('jl:]tgg%;r? bzee(r:cl)a:;if plete and incomplete contacts are derived. The solutions give
u y gion. P 1 pressure profile at the punch—elastic half-space interface for

further into critical complete contact and general complete Cog%polynomial punch profile, even for noninteger power polyno-

tact. I_n_ger_leral_c_:omplete contact, pressure at the punch edge 9ffs so long as the contact region remains simply connected. As
to infinity; in critical complete contact, pressure _drops to zero gbecial cases of the obtained solution, we show the results for five
the punch edge and the pressure profile is similar to that of Binds of punchs: flat-ended punch, square-root punch, conical

complete contact. unch, three half-power punch, and parabolic punch
The axisymmetric solutions for a punch whose shape is et ' P P ' P P '

ended, conical, or parabolic have been known for years. Hertz
found the solution for the parabolic punch in 1882 when he in- . .
vestigated the pattern of interference fringes between glass lendes The Problem Formulation in the Theory of Linear
(see Johnsof6]). His solution is only valid when the contact is Elasticity

incomplete. Bousinessq obtained the pressure distribution for arne following equations give the relevant displacement and
flat-ended punch in 1885 and found the square root singularity #fesses. The vertical component of the displacement is denoted
by u,, and the stress components have two subscripts correspond-
ing to the appropriate coordinatds.and » are Young’s modulus
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF and Poisson’s ratio for the elastic half-space.

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- As Fig. 1 sh he b d diti f he ind .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 5, s Fig. 1 shows, the boundary conditions for the indentation

2001; final revision, Sept. 21, 2001. Associate Editor: J. R. Barber. Discussion on peoblem are
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will T2r= Tz~ 0, (Oﬁ r <°°) (1)
be accepted until four months after final publication of the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS. 0,,~=0, (r>a) 2
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half-space
2a

Fig. 1 Normal indentation of an elastic half-space

punch

and,
u,=f(r), (0=r<a)

®)

wheref(r) is the final position of the punch.

1 E 2 1 ®
23, 2\/_'1_1/2 - a1+ a) 3ta (r,a)
1" -
2
(11)

where

( 1+«

2
O(r,a)= (1+a) “lta

1+a.l—a r2

1
B —r_zFl(E'_T'_
Vi—z

2 '

This boundary value problem can be changed into the following

equivalent potential theory problefeee Green and Zerjal]):

Jw
Ezo, (r>a) 4)
w="f(r), (0=r=<a) (5)
V2w=0. (6)

Green[11] considers the following potential function fas,
which can be obtained through Fourier cosine transf@see
Gladwell [5]):

1 (a g(t)dt 1 (a g(t)dt
or=5| 775t | 77/ O
2 JorZ+(z+it)? 2 JorZ+(z—it)?

Green[11] finds that if f(r) is continuously differentiable in
0<r=a, then

D= 2.d (trf(r) g
g( )—;m N (8)
His further derivation leads to
1 E 1 o (2 tg(t)
14, 0= 5 T2 T dt, (Osr=<a). (9)

Green and ZerngL1] have used E(9) to solve the Boussinesq
problem for a flat-ended punch. This paper will derive the solution
for punches with general polynomial profiles and the conditions
for this solution to be valid in different contact situations; the

load-displacement relationship is also given.

3 Analytical Solutions

We express the displacement field under the punch as a pol%-

nomial:

f(r)zz a,r“ (a=0aq,as,...,a, and a=0)
a=0

(10

— a—1
where the functiorEZ”:alaar“ describes the shape of the punch, d(r,a)=(1+a)-r ;)

a, describes the depth of indentation and is non-negativeqdsd
not necessarily an integer.

3.1 The Solution Whena is Not an Integer but is a Posi-
tive Real Number. Substituting Eq.(10) into Eq. (8) and Eq.
(9), with the aid of the symbolic manipulation prograATH-
EMATICA (Wolfram [12]) we have

Journal of Applied Mechanics

(12)

and,F(a,b;c;z) is hypergeometric function.

Equation(11) and Eq.(12) are general formats; however, one
cannot use them directly whena non-negative integer. The fol-
lowing two sections will give the explanations and the specific
formats when this happens.

3.2 The Solution Whene is Zero or a Positive Even Inte-
ger. If we utilize Eq. (12) and notel'(—a/2)=x, the function
®(r,a) can be simplified as

atte 1 1 1+a l-a r?
lb(r,a)=*r—2 —r272F1 E,* ; ;
=z

2 ' 2 ’a’

(13)
To use elementary functions to expresér,«), we can derive

by hand by letting =r secé and obtain the following alternative
expression:

o
al2 I'=+1
2
d(r,a)=(1+a)re | > -
o S +1-i|0Gi+1)
az_rz 2i+1
r ) a1+a 1

2i+1 (14)

r? \/ re’
l__
a2

3.3 The Solution Whene is a Positive Odd Integer. If we
e Eq.(12), we will have ®(r,a)=o—« and it is difficult to
decide its limit. To avoid this problem, we letr secé and de-
rive by hand the following solution:

r a+3
a+1/2 T
a+3 . i(r)
I'———i|I'(i+1)
2
al+a 1
- > (15)
r
a2

where
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1 oa (V& 7\t 2i-1 0.0015 j
= . — ST, with 14(r) i
2 r r 2i — 20=20.000600 g
\ e 20=0.000900 ) !
1 [a+a2—r2 LY — = 2020.001311 0!
=-In| ———|. (16) LAY - 2020002000 0 !
2 \a—az—r2 o S - === 2050.002600 ¢ !
7 0.001 L ¢
3.4 Total Load. The total vertical force needed to cause thes AN J !
displacemenay, is i v Seo .” !
3 o ~--- !
2+« N \ S, J
a I'—— = \ “em k4
F ja 27rrdr \/_ E Eﬂ a 2 alte 500005 \ \\ Il S ,.o"
=— o 2T = /1T o - =R tumeame
z 0 24,9 1—172 =0 3+a g \ \\
2 \ \‘\
-
(17) e~
N, -~
3.5 Condition for Using the Solution. If the whole punch N, e
contacts with the half-space, i.e., the contact region is simply co 0 | \ \ ] ~
nected, we need to have o 0.2 04 , 0.6 0.8 1
ria
Uzziz:ogo (O<r=a) or Iimﬁ Uzﬂz:ogo' (18) Fig. 2 One-half power punch. The pressure is normalized with
r—a respectto — E/1—v?.
At the punch edge we need to ha"’@dzzmzfo- From Eq.
(12) and noting
1+ 01) (5)
r——— rl=
1 l+a l-a |\ V= ( 2 __a E 1 3 E 4
Filgm il s At T2d, 0™ T T 1—02 a2 (2 ava 17 1/2'F Z)
il 2
we have 1
-® s (23)
2+«
§ 2 where
+a)-a, —5——a*=0.
a:0(1 a)-a, 374 a“=0 (19)
> 3
I'f ——
. . 3Vr 4
If the contact is complete and the pressure at the punch edge is g | _| = P12
zero which is the condition for critical complete contact, the fol- ' 4 1
lowing condition has to be satisfied: 1“( - —>
4
2+«
an — a¥? 1 (1 3112
;0(1+a).aa.(,3—+aa =0. (20) 2 v R Ay
2 1- ;
(24)

4 Solutions for Some Special Cases

4.1 Flat-Ended Punch. When f(r)=a,(0<r=<a), We Figure 2 shows the pressure distributions for a punch with radius
have 1 and profilef (r)=a,— 0.00T *2 under different depth of inden-
tation a,. When ay;=0.001311, it is critical complete contact.

1) There is a singularity at the tip when the indentation depth is no

more than the one for critical complete contact. There will be
singularities both at the tip and at the edgquare-root singular-

which is the same as Boussinesq’s solution and there is a squétb@_when the indentation depth is greater than the one for critical

root singularity at the punch edge. complete contact.
4.2 One-Half Power Punch. In this case, punch vertical 4.3 Conical Punch. In this case, punch vertical displace-
ment field is defined a§(r)=aqy+a;r (0<r<a).

a, E 1
T

T24,0~ 12 @22

displacement field is defined &¢r)=ay+a,r?(0<r=<a).
When When
5 3
ra) 3 F(Z) » r(1) (E)
a0—3 + 7 Ay 7 a’'=0, (22) a0—3 + Zalw a>o0, (25)
E) (Z 2
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0.002 v 0.002 '?
— 20=0.000518 : N e 20=0.001000 '
—meemeem  20=0.001037 h NS o —mcmeem 20=0.001370 s
- 20=0.001570 h { L5, .. ————-— 20=0.001797 N
-camommoan =0. ~, -cememmomm =
0.0015 T aec0i005000 .} 00015 [N, TS~ oco00zrre !
o =0. p ] o N L v - - - - a0=0.002770 ’
]
g S - - - ’ ’ '. g
o e o s o
g 0.001 o~ ,’ T 0.001
N , > N
= N jae PRGN s T
£ ~. e ew® g
= -~
o -, [=]
= ~o =
0.0005 ~- 0.0005
S
~
S
~
~
N\
0 1% 1 0
06 0.8 1 0 0.2 0.4 0.6 0.8 1
r/a r/a
Fig. 3 Conical punch. The pressure is normalized with respect Fig. 4 Three-half power punch. The pressure is normalized
to —E/1—v2, with respect to  — E/1—v?,
r 7
ao E 1 5 E 4
o = . + . -
r 3 274, 7 1-12 222 4\/; 1— 2 932 F(g)
1 E 2 1I a++a?—r? 4
o = . .al.2. I =1In
o o m 17 r(2) |2 |a—a2-r2 3
- r,z (28)
3
N where
1 E ap I'(1) 2

+ . = +2a,
3 I'(

N

)

2 —
2 4 3
S N P (26) F(Z)
r2 a2 rz '

There is a square-root singularity at the punch edge and a loga-
rithmic singularity at the punch tip. (29)

+g;)rr(S/zc)r/lgtzgl)azocomp;er;[g contait:a lzoél(ll—)/l;glsrfé)l Fig. 4 shows the pressure distributions for a punch with radius

L 924, 0~ 1 v 1 and profilef (r)=a,— 0.001 *2 under different depth of inden-

+va’—r?/a—a*-r?). Itleads to the same solutions as those ahtion a,. When a,=0.001797, it is critical complete contact.

Love [7] and Sneddori8]. At the punch edge, pressure drops tarhere is no singularity when the indentation depth is no more than

zero and there is a logarithmetric singularity at the punch tip. the one for critical complete contact; but there will be a square-
Fig. 3 shows the pressure distributions for a conical punch witdot singularity at the edge when the indentation depth is greater

radius 1 and profilef(r)=a,—0.00T under different depth of than the one for critical complete contact.

indentationay. Whenay=0.001570, it is critical complete con- ) ) ) )

tact. There is a logarithmetric singularity at the tip when the in- 4.5 Parabolic Punch. In this case, punch vertical displace-

dentation depth is no more than the one for critical complete coment field is defined af(r)=ao+a,r? (0<r=a).

tact. There will be singularities at both the t{fpgarithmetric When

singularit;b and the edgésquare-root singullalri)ywhen the inden- r'(1) )
tation depth is greater than the one for critical complete contact. ag- 3 +3a,- 5 .a2>0, Oaz,
4.4 Three-Half Power Punch. In this case, punch vertical r > F(E
displacement field is defined &ér)=a,+agr*?(0<r<a).
When 1 E r'(1) 1
T 2ym 1= | (3 Yo Z—r2
7 2
) 5 F(Z) " ) 2r2-a?
T + 5 8y —gya =0, 27) 3 5y azﬁ (30)
5) (z 2
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0.002 :' punch profile is considered such ei$r):§‘,z":0 a,r“ one

1if should first investigate if the contact area is simply connected
' before using the presented solution.

! The derived solution can be the basis for further investigation

20'0015 :.-.-._.-....____ Teeas - ,' of the indentation of elastic half-space when the interface friction
2 e T, T~eoo~- | isconsidered.
u(,; ———‘~‘ s.~" .
o ‘§\\ e !
P .
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| ] 1 1 H
% 02 04 0.6 0.8 Appendix
ra Listed here are the identities used in the derivation which can
Fig. 5 Parabolic punch. The pressure is normalized with re- tl;i/loA?l'tleéI:rEd by using the symbolic manipulation progfdrH-

spect to — E/1—v2.

2+k
A
there is a square-root singularity at the punch edge. oyt?—r? 2 3+k
When r T
i) N3 ) 1+k
RETRR TR o
r 5) F(E) 2. | =—dt=— . —— 117k
NEE 2 Tk
we have 2
4 E 1k 1 14k 1-k r?
R e AL = e

The pressure drops to zero at the punch edge and the solutionis 1 1+k 1—k r2
the same as Hertz’s. 3. —|,Fyl=,— —: _;_)

Figure 5 shows the pressure distributions for a parabolic punch ~ dr 2 2 2 'a?
with radius 1 and profilé(r)=a,—0.001 ? under different depth 2
of indentationa,. Whenay=0.0020, it is critical complete con- _ 1;" 1 = E _ 1;" 1;kr_
tact. There is no singularity when the indentation depth is no more B r r2 20 o 2 ' 2 'g?
than the one for critical complete contact. There will be a square- 1— —
root singularity at the edge when the indentation depth is greater a?

than the one for critical complete contact.

2

;
5 Discussions \/1- -
a a

The solutions obtained in this paper can be the basis for finding 4. f dr
contact pressure between two smooth surfaces with arbitrary
shape profile.

For the nanoindentation using an axisymmetric indenter, these rl-—
solutions will provide a good theoretical basis for interpreting the 1 \/; 2

load-displacement curve and evaluating Young’s modulus and = 1+k+ 3 K
Poisson’s ratio. rl-—
For punch displacement profile in the formula Bfr)=a, 2

+a,,r“™ (mis positive integer, the pressure distribution will not
have singularities when the indentation depth is not more than theferences
onle f.(:r Crtlt::ﬁal Com%letz Cont?‘Ct at?ld WI|(|i hé}:V?_ a sgua}[rhe-_root SI?- 1] Hay, J. C., Bolshakov, A., and Pharr, G. M., 1999, “Critical Examination of
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+.a2m’ 1f (mis pos_ltlve In.teg.el; the pressure dIS'[I’IbL_ItIOI’l [3] Fu, G., and Chandra, A., 2001, “A Model for Wafer Scale Variation of Mate-
will always have a logarithmetric singularity at the punch tip and " ria] Removal Rate in Chemical Mechanical Polishing Based on Elastic Pad
will have a square-root singularity at the punch edge when the Deformation,” J. Electron. Mater30, pp. 400—408.
indentation depth is greater than the one for critical complete cont4] Shield, T. W., and Bogy, D. B., 1989, “Some Axisymmetric Problem for Lay-
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A Simplified Method to Predict
v.soniopoutes | D€ Steady Cyclic Stress State
st 4 of Creeping Structures

Seismic Research,

~ Department of Civil Engineering, Simplified methods have been developed to find the long-term cyclic state of stress for
National Technical University of Athens, structures that exhibit inelastic creep and are subjected to a short period cyclic loading.

Zografou Gampus, In the present work a new simplified method is presented which may be applied to cyclic

GR-157 73, Athens, Greece loads having any period. The method is based on decomposing the residual stress in

Fourier series. The various Fourier coefficients are computed, in an iterative way, by
satisfying equilibrium and compatibility at a few time points inside the cycle. The whole
numerical procedure is formulated within the finite element method and examples of
various structures are presentedDOI: 10.1115/1.1430234

1 Introduction stress by satisfying equilibrium and compatibility at the end of the

Structures such as nuclear reactors, aircraft gas turbine progy cle. The process stops when there is no more change in the
. - o ' g P lues of the residual stresses. Examples of applications to various
sion engines, etc., operate in high levels of loads and temperattér

; . . ffuctures have been presented by Ponter and Brofin
't. IS esse_ntlal_, therefore, for th_e deS|g_n of these structures, to p viliopoulos[5] proved thgt a fictitious )clzycle period may be used
dict the inevitable accumulation of inelastic strains throughog

their life that the rate of convergence improves substantially.
The complete response of a structure, which is subjected tQ \When an engineer, though, faces the problem of the long-term

. . . e AT ctural response of a cyclically loaded structure, he cannot
given mechanical loading and exhibits inelastic time independ ow, in advance, whether the cycle is short or not. There is a
(plast:c) a'jl_c:] inelastic tmfe-%epende(rtrgep beh;:wolr, bIS quite Leeq, therefore, to estimate this response in a simple way, regard-
complex. The reasons of the complexity are the laborious apds e cyclic duration, without having to resort to time-stepping
often numerically unstable time-stepping calculations that have &iculations
be performed following the exact loading history. '

SV A In this work a new simplified method, originally proposed for
When the loading is highly regular, i.e., it is either constant agyjication to a simple structurg6)), is developed. This method
cyclic, much of the complexity of the inelastic response is co

. i . X ri‘ﬁay be applied to any structure which is subjected to a cyclic
fined to an initial transient stage. It is very frequently true that th%ading of any period. The main ingredient of the method is the

stresses and the strain rates tend towards a steady or a cyglits gecompositon of the unknown residual stress distribution
pattern. If this pattern develops early enough, then it may W&his Fourier series. Thus the problem is converted to a problem of
suffice to assess the complete behavior with perhaps a very ligya|yating the Fourier coefficients of the various terms of the
ited time-stepping analysis at the early stages of the applicationgries. These coefficients may be calculated in an iterative way,
the loading. , . , using the time derivatives of the residual stresses to which these
The methods that seek to find this stress pattern right from thgefficients are shown to be directly connected. By satisfying equ-
start of the calculations are called simplified methods. Theggrium and compatibility, these derivatives may be calculated at
methods, not only arrive at the steady-state stress pattern miggrrete time points inside the cycle. An update of the Fourier
quicker than full time-stepping analyses, but also provide a mugRefficients then takes place by numerically integrating over the
better insight into the inelastic response of a structure. Wellycle. The iterations stop when no more significant change in their
known examples of such methods, with plastic behavior onlygyes, within a specified tolerance, takes place. In order for the
present, are the limit and shakedown analyses of structures. sequence of iterations to be convergent, a special acceleration nu-
For elevated temperature conditions the effects of creep mustfgrical scheme is used. The whole procedure is formulated within
taken into account. Leckie and Ponféi proved theoretically and the framework of the finite element method and examples of ap-

verified experimentally[2]) that, when the level of cyclic loading plication to one and two-dimensional structures are included in
is belown/(n+1) of the elastic shakedown loading, wherés the paper.

the creep index in the power creep law, creep effects are the domi-
nant ones and plasticity may be neglected.
When only creep effects are present, Pofi@jrdeveloped a 2 The Steady Cyclic Stress State

simplified method that may be applied to loads having a very o5 assume that a structure is subjected to a cyclic mechani-
short period cycle. It is natural, then, to assume, that there is p

time for any stress redistribution to take place inside a cycle.gl loading of periodr:

Keeping, therefore, the residual stress constant inside the cycle, an P(t+T)=P(t). (1)

iterative procedure was then set up, which updates the re5|dua]ln response to this loading, the structure develops a stress sys-

_ tema;(t), which may be decomposed into two parts: Assuming a
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF completely lme:‘r elastic mat?_”al behavior, thQ first p"’_‘rt ISa Cy_C“C

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIEDME-  €lastic stressoyj(t) that equilibrates the cyclic loading that is

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan 13gpplied, and the second part is a self-equilibrating stress system

2001; final revision, Aug. 6, 2001. Associate Editor: M.-J. Pindera. B H A H ;
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Wheeler, Department of Mechanical Engineering, University of Houston, Houston,
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The strain rates, in the same way, may also be decomposed into 1 (7. 2kt

two termseé;] and ejj; : bﬁﬁfo pij(t)cos——dt. (10)
a8l _nely el cer .

€= 8ij T &ijr = &+ €ijr T €ijr - ®) On the other hand, if we integrage; (t) over the periodr, we
In the above equation the residual strain rate term has beget

itself decomposed into elastic and creep parts.

. . . - T.
The elastic strain rates are related to their corresponding stressJ’0 pij (D dt=p;;(T)—p;;(0)

rates by
&f'=Ciju o) ” ”
4 ao(T) ao(0)
oo @ =(T+E au(T) |- | ==+ a(0)
€ijr _Cijk|PkI k=1 k=1
with Cj; being the tensor of the elastic constants. (11)
For the creep component, Norton's viscous power law is a§mere use of the expressiof) was made at the beginning and at
sumed to hold the end of the cycle period. Equati¢hl) may be used to evaluate
Y the coefficienta, .
.err = (5) If one satisfies equilibrium and compatibility at some discrete
n+1 doy; time points inside the cycle, the time derivatives of the residual
where ¢ is a strictly convex creep surface. stresses themselves may be expressed in terms of the Fourier co-

For two different states of stress; andy;«, the correspond- efficients we seek to find. Thus Eq®), (10), and(11) may be
ing creep strain rates satisfy the Drucker’s postulate of stabiligged in an iterative manner which, in case of convergence, may
7D: lead to the values of the Fourier coefficients within a specified

. tolerance.
(O'ij_o'ij*)(efjrr_z::jrr*)zo- (6)
The above postulate has been used by Frederick and Armstrong
[8] to prove the existence of a steady cyclic stress state, which c@n Formulation Using Finite Elements
be stated as follow§Gokhfeld and Cherniavskjg]): . L .
“At cyclic loading of a structure made of Drucker’s material The way to evaluate the time derivatives of the residual stresses

the stresses and the strain rates gradually stabilize to remain JKY be done, for any structure, using the finite element method.
altered on passing to the next cycle.” To this end our structure is discretized into a finite number of
The above theorem states that after many applications of Béments which are assumed to be interconnected at a discrete

load cycless;;(t+T)—oj;(t) and since the elastic stress is itselflumber of nodal points situated on their boundaries.
cyclic: pjj(t+T)—pj; (1). In the sequel, we denote vectors and matrices by bold letters.

It can also be proved[9]) that the stress distribution in the L€tUus denote, by, the vector of the time rates of the displace-

steady cycle is unique and does not depend on any initial state®gnts of the nodal points of the discretized structure at some time
the structure. t. The strain rate at the Gauss integration points are given in

terms ofr by

3 Fourier Decomposition of Residual Stresses e=Br. 12)

In order to calculate, therefore, this cyclic stress distribution, jt USing the discretized form of Eq&2)—(5) one may write solv-
is sufficient to compute the residual stress distribution of the cifid in terms of the residual stress rates, also at the Gauss points
clic stress statg;;(t). Since this stress also becomes periodic, it p=D(e—&'— &) (13)
may be decomposed in its Fourier series over the period of load- '
ing, as this can be done for any periodic functi@ee, for ex- whereD is the elasticity matrix and consists of the inverse terms

ample, Tolsto\[10]): of Cijui -
” . . Since the strain rates are compatible and the residual stress rates
N 2kt 2kt are self-equilibrated, from the principle of virtual wo(R.V.W),
pii()=—>+ kZl aCos—— T hysin— (M we may obtain

Fourier coefficients of the Fourier series. The problem therefore is

now transformed to evaluate these coefficients. In a classical Fou- , , .

rier analysis problem these coefficients can be evaluated if théere ' denotes the transpose of a vector or matrix.
function is known. In our case, though, it is the functig(t) we ~ After the substitution 0f12) and(13), in (14), we may write
seek to find. Nevertheless, let us differentiate &g.with respect

where the coefficientsy, a, andb,, k=1,2,... arecalled the f €' pdV=0 (14)
\%

’

to time. Then we get 'r’f B'D(Br—€”— €")dV=0 (15)
- \%
. 27 A 2kt . . . .
pij ()= - 2 (—kak)sm7+kbkcos? . (8) and since this equation must hold for any
k=1
From the above equation we observe that the Fourier coeffi- (J' B’DBdV)i=f B'b’eldv+f B'Del'dV (16)
cientsa, andb,, k=1,2, ... appear also in the expansion of the v v v

time derivative of the residual stresses. Making use of the q;
thogonality properties of the trigonometric functions we can get

expressions that may be used to evaluate these coefficients in . L ~cor
terms of the time derivativg;;(t): Kr =R+ VB DedV a7)
1 (T, . 2kt . . . -
a=——| pij(t)sin——dt (9) whereK is the.stlﬁness matrix qf the structure aRds the nodal
km J o T vector of the time rate of the given loading.
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5 Numerical Procedure evaluation of the Jacobian of the system of B@®) becomes quite

a cumbersome task and thus the conversion of the scheme to one
hich has almost a quadratic convergence does not seem to re-

el]ce the computational effort.

The form of the expression®), (10), and (11) allow us to
evaluate the Fourier coefficients of the various terms of the Fo
rier series(7) in an iterative manner, since an update of thes
terms may be provided at the end of the cycle, after integrating
over its periodT. 6 Examples of Application

The elastic problem is solved first and the elastic stresses, duq.he numerical procedure that was described above is applied to

to the applle_d Ioad_lng, at _the Gauss poinfs(t) are determined three examples, the first one being a one-dimensional, the second

at dlns.crete time pow:g |ns(|0c)je t(rg)e cycle. . one a two-dimensional axisymmetric, and the third a pure two-
Initial values foray”, a”,b”, k=1,2,..., vhich are also gimensional one. All the structures were subjected to a loading

assigned at the same Gauss points, are givemmally zerd. \whose variation with time has the form

Using the discretized form of7), the residual stressgs®(t) at

the Gauss points may be evaluated for any of the discrete time P(t)=P sinz(lt) 1)

points inside the cycle. Creep strain rates at the Gauss points and 0 T)

at the same time points may then be determined with the aid of theI'he time variation of the load over four cycles can be seen in
discretized form of(5). After solving the system of Eqg17), Fig. 1

using (12) and(13) the residual stress rat@”)(t) may be deter- L o o

mined at the Gauss points and at the same time points. It shoulc;lrhe equivalent td5) uniaxial creep law is given by

be noted here that the initial decomposition of the stiffness matrix e'=Ko". (22)

that was performed for the solution of the elastic problem, is used

throughout the whole computation. An update of the Fourier o3

efficients may then take place using the discretized forn®nf

(10), and(11), by numerically integrating over the time peridd
More specifically, if we denote byu) the current iteration we

can write the following expressions:

The structures were assumed to be made of steel with its pa-
meters listed in Table 1.

The maximum values of the applied loadiRg were chosen so
that the maximum elastic stress does not exceed the steel yield
stress of 300 Mpa.

1 (T ok 6.1 Pin-jointed Framework. The pin-jointed framework
(m)— _ (1) (2Kt shown in Fig. 2 was chosen to serve as a first example of appli-
o= f [p'#(t)]sin——dt ) g p pp
ko T cation of the proposed meth¢d 2]). All the elements of the truss
1 (T ot haxe an e(;:]l_Jl_aI i:)oossr;sectional are%Aevfld crrﬁ. " _
(W) — () ] period T= rs was considered whereas the maximum
Uk kwfo [p*(1)]co T dt (18) value of the concentrated loading, that was applied at node 3
downwards, was taken d@% =30 kN.
1 ~ ~ T The variation of the cyclic residual stress distribution with time
5‘0“>=§a{()“)—2 g+ > aﬁ””rJ' [P (1)]dt. over a cycle for the various truss elements can be seen in Fig. 3.
k=1 k=1 0 Due to the structure’s symmetry results for elements 2—4 and 3-2
In order for convergence to take place, an indirect update, bas¥g identical to the ones of elements 1-3 and 1-4, respectively.
on a special acceleration procedure for nonlinear systems of equ

tions (Isaacson and Kelldil1]), is used: %.2 Thick Cylinder. A thick cylinder of an internal radius

of 10 cm and an external one of 20 cm is considered next. The

a§<’”l)=gog{(’“+(1—go)a§<’” cylinder is subjected to an internal pressure that is not varying
spatially. Since both structure and loading is axisymmetric, five

by "= oui* + (1— )bl (19) axisymmetric finite elements were used to discretize a vertical

(u+1) ) section of the cylindefFig. 4). In the same figure the boundary

— o1 (1 conditions are also shown. The material was assumed incompress-
=os" +( _‘P)T ible and, for this reason, Poisson’s ratio was taken equal to
v=0.4999. Eight-noded isoparametric elements with22Gauss

whereg is an acceleration and convergence parameter.

The discretized form of the sum inside the brackets, of the first
term of the right-hand side of Eql1), is an expression for the _
residual stress at the end of the cycle. The Euclidean norm of this Po
residual stress vector may serve as a means to stop the iterative i
procedure, i.e., the iterations may stop when

(1) (1) e
o (Dl (D) _ 20 =
I DM, ° 1
wheree; is a pre-specified error tolerance. 0 e f———f——
The proposed numerical scheme has a linear rate of conver- 0 T oF 3T 4T

gence. The value ap may be chosen, in a trial and error fashion,
so as to produce a fast and uniform convergence of the Wh@lg 1 Load variation with time over four periods used in the
procedure something which is easily detected in the very few firgtamples

iterations. Then this value is kept constant throughout the whole

history of the iterations. If one performs an error analygid]),

the “best” value of the parametes at each iteration may be found

by evaluating the derivatives, with respect to the Fourier coeffi- Table 1 Material constants

cients, of the various functions involved. These derivatives, how=——, ;

ever, cannot be found explicitly and an implicit evaluation of the%OUIngs modulus: E= 21X 10° kN/ent

A . . oisson’s ratio: v=0.4999
is time-consuming because of the amount of the Fourier coeffipnstant in Norton's law: K=.68x 10~ (S units

cients which may increase considerably depending on the numiigfex in Norton’s power law: n=3.0
of terms of the Fourier series considered. Due to this fact the
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Fig. 2 Pin-jointed framework

-20
5 0 25 50 75 100
TIME (hours)
: ElL 3-4
<< 000000, % ! o . ) .
E M Fig. 5 Distribution of the cyclic steady-state radial stress in-
E 2.5 ‘ EI'1-3 side a cycle for elastic and inelastic behavior at Gauss points 1
Y and 2
PRI et TR e
2 EL 1-2
g o -5
7] e
< 5
2 25 <
25 AA AtBedep - ; -
= Ay A AABSANLANE @2
2 Bttt g g
=
5 -11
-5 g g
0 25 50 75 100 g /
TIME (hours) 2 14
5 \
Fig. 3 Cyclic steady-state residual stress distribution in the g
truss elements of the six-bar structure inside a cycle 17
0 25 50 75 100
integration points were used, which showed no “locking” phe- @ TIME (hours)

nomenon due to the assumed incompressibility of the material.

To check the correctness of the computer program that was
written following the numerical procedure that was described in
the previous sections, a constant in-time load was considered firs 35
and the results were found in complete agreement with the ana . 30 s

| —4— Elastic only —#- Elastict+Creep |

lytical results(Kraus[13]). E /" ‘\A

The cyclic loading case was considered next. The cycle perioc & 25 / \
was taken to b&=100 hrs., whereas the maximum value of load- & 2p
ing was taken a®,=20 kN/cn?. Results are reported at the & 5 o ) X
nearest to the load Gauss integration points 1 atgh@wn in Fig. =

4). In Fig. 5 one can see the variation inside a cycle of the radial g 10 ? \" \
stress assuming a completely elastic behavior and the variationc & 5 \

the same stress in its cyclic steady-state. It is easily realized tha e ;
inelastic creep has a small effect on the radial stress. This is ho @ 0

the case with the hoop stress at the same pdfits 6). In Fig. £ -5
_.'hu

-10

0 20 40 60 80 100
(b) TIME (hours)

N Fig. 6 Distribution of the cyclic steady-state hoop stress in-
2 side a cycle at Gauss points 1 and 2; (a) residual stress, (b)

P(t) EE total stress for elastic and inelastic behavior
3.1
Q [ONIN O] Q0O

7 6(a) one can see the variation of the cyclic steady-state hoop

z‘—— 10 cm > X residual stress inside a cycle. This residual stress, induced by
“ 20 cm " creep, causes a significant effect on the elastic stress resulting to a

r downward shift when the cyclic steady-state condition is reached

while, at the same time, the point of the occurrence of the maxi-

Fig. 4 Finite element discretization of thick cylinder mum stress moves towards the |&Fig. 6(b)).
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Fig. 7 Finite element discretization of a quarter of a plate

at the Gauss integration point 1 shown in Fig. 7 turns out to be
2.54 P. This point is the nearest integration point to the corner
where the maximum longitudinal elastic stress should be approxi-
mately equal to B.

The maximum value of the cyclic loading was taken R
=10 kN/cm. The cyclic steady-state residual stress distribution
inside a cycle at the same integration point can be seen in Fig.
8(a), whereas the corresponding total stress distribution can be
seen in Fig. &), for elastic and inelastic behavior. As it may be
observed, inelasticity causes a total translation of the elastic stress
distribution downwards without changing the time point where the
maximum stress occurs.

The numerical procedure was then applied using the same load-
ing but for a cycle period of =1 hr. This period turned out to be
a “short cycle” period since the residual stresses in the steady-
state were found to be constant inside the cycle with the value of
the xx-residual stress at the Gauss integration point 1 being ap-
proximatelyp,,= —5.77 kN/cm.

The results of the two last examples were found in good agree-
ment with the ones obtained by a time-stepping general purpose

6.3 Square Plate with a Hole. The last example of appli- finite element prograntABAQUS [14]). An explicit time integra-
cation is a plane stress concentration example of a square plite scheme was adopted and in order to get higher accuracy this
with dimensions 2820 cm and having a circular hole in itstime-stepping program had to go through many time increments to
middle of a diameter of 2 cm. The loading is applied in equal paiget near the steady-state solution especially for the stress concen-
right at the two vertical edges of the plate. Due to the symmetry tration problem.
the structure and the loading one quarter of the structure is onlyFor all the examples that were presented above, based on a
analyzed witha=10 cm andb=1 cm. Ninety-eight eight-noded good choice of the parametes, the cyclic steady-state was
isoparametric elements withXx3 Gauss integration points werereached in a few iterations, presenting no numerical instability. A

used for the finite element discretizati@rig. 7).

very few number of terms of the Fourier series generally proved

Because of the dimensions of the plate and the hole this prahfficient. A limited number of time points inside the cycle are
lem approaches the infinite plate solution and the elastigtress needed, mainly to properly describe the time variation of the load.
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Fig. 8 Distribution of the cyclic steady-state Xxx-stress inside a
cycle at Gauss point 1; (a) residual stress (b) total stress for
elastic and inelastic behavior
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The stiffness matrix that is used for the time derivative evaluation
of the residual stresses at these points needs to be formulated and
decomposed only once; thus the whole procedure turns out to be
quite an efficient one.

7 Concluding Remarks

A new simplified method that may be used to estimate the long-
term nonlinear creep behavior of structures under cyclic loads is
presented. The method removes the short cycle assumption of
existing simplified methods and can be applied to cyclic loads of
any period. It is based on decomposing the sought residual
stresses in the steady-state in Fourier series. The various terms of
the Fourier series are evaluated in an efficient way through an
iterative process. The whole procedure not only avoids the very
laborious time stepping computations and leads quickly to the
final cyclic state, but also provides a good insight on the effect
that inelasticity has on the structure.
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A Boundary Element Method
Without Internal Cells for
Two-Dimensional and

wsaisce | Three-Dimensional Elastoplastic

Department of Mechanical
and Aerospace Engineering, P b I
Arizona State University, ro e ms
Tempe, AZ 85287-6106
e-mail: gao@zonatech.com In this paper, a new and simple boundary element method without internal cells is pre-
sented for the analysis of elastoplastic problems, based on an effective transformation
technique from domain integrals to boundary integrals. The strong singularities appear-
ing in internal stress integral equations are removed by transforming the domain integrals
to the boundary. Other weakly singular domain integrals are transformed to the boundary
by approximating the initial stresses with radial basis functions combined with polynomi-

als in global coordinates. Three numerical examples are presented to demonstrate the
validity and effectiveness of the proposed metH@DI: 10.1115/1.1433478

1 Introduction The most popular technique is the so-callddal reciprocity
rr]’r_1ethod(DRM) proposed by Nardini and Brebbia in 1987] for

aplid dynamics. This method, approximating the body force effect
quantities using a series of prescribed basis functions, transforms
the domain integrals to the boundary by employing particular so-

domain integrals, the yield regicinonlinear regionrequires that lutions that are derived from the differential operator for these

it be discretized into internal cells and that the initial stresses &@SiS functions. Since the publication of the first book on the
cells’ nodes be determined. Therefore, integral equations for intefXM by Partridge et al. in 199218] the method has been exten-

nal stresses are introduced. Since domain integrals involved in §iely used by means of using thadial basis functionRBF)

internal stress integral equations are strongly singular when tfed- Zhu and ZhanfL9], Golberg et al{20], Power and Mingo
source point is one of the cell's nodes, particular treatment 41, Cheng et al[22]). More recently, Sensale et d23] suc-
required. One of the challenging tasks in the inelastic bounda#§SSfully applied the DRM to solve viscoelastic problems using
element method is to remove the strong singularities appearingfl¢ pseudo-surface tractioand pseudo-body forcepproach.
the stress domain integrals. Towards this end, substantial efforin order to avoid the need for domain discretization in the in-
has been expended in this area, such as the works of Ricardélgstic boundary element method, a method callecptirécular-
[5], Mendelson and Alber§s], Telles[7], Lee and Fennef8], integral approachwas proposed by Henry and Banerj@d]. In
Chandra and SaigdP], Guiggiani et al[10], Dallner and Kuhn this approach, the solutions are decomposed into two parts—the
[11], Okada and Atlur{12], Huber et al[13], and Aliabadi and complementary and particular solutiofsee also Kang25]). The
Martin [14]. A detailed review can be found in the article by Gagomplementary solutions satisfy the elastic boundary element
and Davieg15]. However, until recently the first boundary ele-method equations, while the particular solutions are related to the
ment method computer codéBEMECH) dealing with two- initial stresses by using a Galerkin vector which is approximated
dimensional and three-dimensional elastoplastic problems haigh specified global interpolation functions. The equations estab-
been released by Gao and Davjé$] based on an effective re- lished using this method do not include any domain integral, so no
moval of the strong singularitie§15]). In this code, as in the internal cells are needed. However, to date, there are no strong
literatures listed above, the yield region of a problem is dissenchmark tests and engineering applications to demonstrate its
cretized into internal cells for evaluation of the domain integraisotential.
associated with the initial stresses. Although the cell integration Recently, Ochiai and Kobayash26] presented an improved
scheme can give accurate results, the discretization of the interpalltiple-reciprocity boundary element method to transform the
region eliminates, to a certain extent, the advantage of the bouidgmain integrals to the boundary. Since both the initial stresses
ary element method in that only the boundary of the probleahd the kernel functions are operated using Laplace equations, the
needs to be discretized into elements. _ resulting boundary integral equations are very complicated.

During the past two decades, various techniques have been dan this paper, an effective transformation method, called the
veloped to overcome the deficiency of the domain integrals agyqia| integration methogdfrom domain integrals to boundary in-
pearing in problems with body forces and time-dependent termggals is presented without using any particular solution and
- Galerkin vector. Based on this method, a strongly singular domain

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF !ntegral used t'O |so.Iate the -Strong singularities in the internal stress
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Integra! equations 1S analytically tlrapsformed to th.e boundary. Al
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februargy€maining weakly singular domain integrals that involve the un-
12, 2001; final revision, October 25, 2001. Editor: M. Ortiz. Discussion on the papknown initial stresses are transformed to the boundary by approxi-
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mechanif;qéting the initial stresses with the RBF combined with polynomi-
Engineering, University of Houston, Houston, TX 77204-4792, and will be accepted _ . . . .

s in global coordinates as commonly used in the DRM. Finally,

until four months after final publication of the paper itself in the ASMEJ/RNAL OF & 8 ) -
APPLIED MECHANICS. one numerical example is presented to verify the proposed trans-

The conventional boundary integral equations dealing with i
elastic problems include domain integrals associated with initi
stressegstraing (Swedlow and Crusgl], Mukherjee[2], Telles
and Brebbid 3], and Banerjee and Raveendidd). To evaluate the

154 / Vol. 69, MARCH 2002 Copyright © 2002 by ASME Transactions of the ASME



formation technique, while other two are provided to demonstrate T
the effectiveness of the elastoplastic boundary element method
described in this paper.

2 The Radial Integration Method for Transforming
Domain Integrals to the Boundary Q)

For a two-dimension domaif2 bounded by a boundaty, de- P
fine a Cartesian coordinate systerj (x,) and a polar coordinate
system (,#) with the origin at the source poimt. The relation-
ships between the Cartesian and polar coordinate systems are

ri=x,—xy=r cosé —=2n )

o xP—r si _ ) N
r2=Xz—X;=rsiné Fig. 2 Integration pattern along radial direction ~ r

wherexP represents the Cartesian coordinates at the source point

p andr is the distance between the source point and a field point.
A differential domaind() in the polar coordinate system can be

expressed as Equations(6) and (7) are still valid for the three-dimensional
problems with the understanding that the subsdriiatkes values
dQ=rdrdé. (2) from 1 to 3.
Referring to Fig. 1, when the field point is located on the bound- Equations(4) and (8) have been used to remove the strong
ary, the following relationship can be obtained: singularities appearing in the inelastic boundary element method

(e.g.,[16]). In this paper, they are used to transform a domain
integral to the boundary. Considering a general funcfipg) with
X representing X; ,X»,X3), its domain integral can be performed

where ¢ is the angle between the normals of the differential ar%smg Egs(4) and (8) as follows:

rd 6 with radiusr and the differential boundamyI" with outward
J f(x)szJ[
s

rin;
rdo=dr’ c03¢:dFT 3)

normaln; . The summation convention is adopted for the repeated

Q@
J frﬁldr]dS(Q)=fSF(Q)dS(Q)

subscripti. 0
Using Eq.(3), Eqg. (2) can be written for boundary field points (10)
as where
dQ=rdrdS 4 Q)
where F(Q)=j fro-tdr. 11)
0
1 or
dS=-dl (5) In the above equationgd=2 for two-dimensions ang=3 for
three-dimensions, and the symt@limplies that the correspond-
in which, the following equations are used: ing variables take values on the boundérysee Fig. 2
o Substituting Egs(5) and (9) into Eq. (10) leads to
o v f (d0 f = LR 12)
X =| 51— .
a ) prf7on
il (7

Now the domain integral has been transformed into a boundary
For three-dimensional problems, through defining a spheridategral based on the radial integréll). It is noted that the

coordinate system, a similar equation can be obtaifisl) as ~ boundary integral in Eq(12) is performed in the Cartesian coor-
dinate system and the source point can be either a boundary node

dQ=r2drds (8)  or an internal point.
where For most cases, Eq11) can be analytically integrated. To do
) this, the coordinateg appearing in the functioi(x) should be
1o expressed in terms af using the following equations:
das =z %dl“. 9)
Xi=xP+rr (13)
r'ir,i:1. (14)

It is important to note that the quantity; is constantor the radial
integral (11). For some complicated functionf(x), Gaussian
quadrature formulas may be used for evaluation of the radial in-
tegral Eq.(11). Experience shows that four Gauss points are suf-
ficient. To use the Gaussian quadrature formulas, the following
variable transformation is required:

r r
r:(—Q)ng(—Q) (—1=s¢=<1) (15)
2 2
' p where ¢ is the Gauss coordinate. Any domain integral can be

transformed to the boundary by Ed2) with the use of the Gauss
Fig. 1 Relationship between differential elements  rd@ and dI' quadrature to evaluate the radial integihd).
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3 Boundary Integral Equations and Regularization whereo},(p) is the initial stress at the source pojnt Now the
for Elastoplastic Problems first integral on the right-hand side of E@2) is weakly singular
- and can be evaluated by the cell subdivision technique, while the
asrfrong singularity is shifted to the second integral of the right-
hand side. Since the integration is carried out in the Cauchy prin-
cipal value sense, a small spheog circle for two-dimensional
Cij(P)U;(P)+ f Ti;(P,Q)u;(Q)dT'(Q) Q, with radiuse around the singular poirt and bounded by a
r boundaryl”, can be cut off. Thus, in terms of EO), the radial
integral (11) for the last integral in Eq(22) becomes

be expressed in the incremental fo(f5]) as

:f uij(P,Q>'t,~<Q>dF(Q>+f Eq(P.q)h(q)d0(q) @1
r e F(Q):“mj r_B\PinrBildr

(16) e—0Je
whereT;;(P,Q) andU;;(P,Q) are the Kelvin fundamental solu- =Inr(Q) Wi — lim{Ine Wy, }. (23)
tions for tractions and displacements at a p&@nin the jth direc- &—0

tion due to a unit load at poiR andE;;(P,q) is the correspond- apq according to Eq(12), it follows that
ing strain kernel '

1 or
L f = (p,q)dQ(q):f—, —Inr W;,dl
Eijk:rﬁ_—quijk 7) Q - Frﬁ ton i
1 or
where i
_:T-]Of srB—_l &—nln £ qfijkldr
\Pijk:8ﬂ_(ﬁ_1)(1_V)G{(l_zy)(r,kﬁij+rvj5ik) _f ra_rlan”kl dr
)y an 1
=St Brr i it (18) r
In Eqg. (16), ¢;;=1/25;; for smooth boundary points and . Ine
= ¢;; for internal points. The strongly singular terms arising from +s|'in0 T Wiji dl (24)

e

the integration of the traction kernel are determined indirectly

using the rigid-bodytranslation condition. The stress incrementsin which dr/dn=—1 andr=¢ have been used for the integral

oj; at an internal poinp can be computed using over the spherical surfader circle) I', . It can been shown that
the last integral on the right-hand side of Eg4) is identical to

ij(p)= Jru”km,Q)tk(Q)dr(Q)— JrTi,-up,Q)uk(Q)dr(Q) zero([15]). Hence, Eq(24) becomes

ar
f Eij(p,q) dQ(Q):J r%lanijkl dr. (25)
+ f Eijia (P, 0) (@) d(q) +F{f(oR) (19) . :
Q Now the strongly singular domain integral has been trans-

whereF(oF)) are the free termée.g., Telleg7], and Banerjee formed into a boundary integral. Since the source pping lo-

| cated inside the domain, no singularity occurs and standard

and Davied27)), and Gaussian quadrature formulas cangbe uged to evaluate this inte-
1 gral.
Eij =15 Yij (20)
S 4 Transformation of Domain Integrals to Boundary
in which Using Approximation Functions
In the previous section, the last integral in EB2) consisting

‘I’iikl:m[(lfz”)(aﬂﬁlﬁr Sik i~ 9ij O of the know functionE;;,, has been directly transformed into a

boundary integral as shown in E@5). However, the first domain

+ B k1) + Bv(Sr j¥ ot Sl (¥ i+ ol r j+;r,ir)  integral on the right-hand side of E(2) and the domain integral

_ in Eqg. (16) contain the unknown initial stressé$ (q). The direct
B BB+2)N r T ] (21) " {ransformation is infeasible. Following the idee%a successfully used
The integrals in Eqs(16) and (19) should be interpreted in the in the DRM (Nardini and Brebbid17], and Partridge et aJ18]),
Cauchy principal value sense. After use of the cell subdivisiahis paper approximates the initial stress incremerfiéq) by a
technique([16]), the weakly singular domain integral in EQ6)  series of prescribed basis functions.
involving the kernelE;;, is bounded, while the strongly singular ) _ N _
domain integral in Eq(19) involving the kernelE;;y, is still sin- 4.1 Approximation of Initial Stress Increments Using Aug-
gular, with order 7. Special integration techniques must theremented Radial Basis Functions(RBFs). It has been demon-
fore be adopted in order to make the integral bounded. To do th#tated that the combination of thedial basis function{RBF)

the domain integral in Eq.19) can be written as andpolynomialsin global coordinates can give satisfactory results
(Partridge and Sensdl28], and Golberg et a[29]). In this study,
. linear, quadratic, and cubic polynomials are considered. Thus, the
.. p
f Bij (P.a) ol (@)d(a) initial stresses can be approximated by
Na B _ B B B
- f Eqja (P a){0 ()~ o(p)}dO () ohi(0= 2, aida00+ et 2 cxit 2 2 el
Q = = =1 j=
B B B
+(}E,(p)( LlEijm(pxCI)dQ(Q)) (22) +, > > clnyxx, (26)
i=1 j=i n=j
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Table 1 Commonly used RBF  ¢p,(x)

where the summation convention is used for the repeated super-

Linear Cubic TPS

Multiquadric

scripts andFsj, is derived from Eqs(11) and (17):

R?InR

JRZTF 2

s r(Q) r(Q)
Fijk(Q):fO ‘I’ijchsdr:‘I’ijkL b dr=v;, F3Q).

(34)

Substituting Eq(34) into (33) and taking account of Eq17), one
can obtain

27) fEijk(qu)b']Pk(q)dQ(q):ajskfr ik 5 F(QAIN(Q).

whereN, is the total number of application points consisting of (35)
all boundary nodes and some selected internal poails, ¢y,

cl, ¢y, andc)!

are coefficients to be determined aqtidenotes
the Cartesian coordinates at the application pgintf quadratic

Referring to the vector shown in E€R9), F5(Q) consists of the
following radial integrals:

polynomial is used, neglect the terms associated wfifhy if lin- r(Q

ear polynomial is used, neglect the terms associated Wlthdﬂqﬂth

andckI ; and if RBF only are used, only keep the terms associated

with af .
tridge[30]) are listed in Table 1.

In Table 1,R is the distance from the application poit i.e.,
R=|x—x"|. For convenience, Eq26) can be expressed in a

simple form as
NS

c'rﬁl(x>=521 afy P o(x) = {® ()} e}

where the vector§®(x)} and{«,,} are arranged as follows:

{D()}T={p1(X), 2(X), . ..

3,2
CX1 XX, )
T_jfal A2 0 1 2 3 .11 .12
{et ={a @k, - - - L +Ciat +Cirs Cict +Cict Cidl »
111 112
SCid G )

In EQ.(28), Ng=N+ Np with N, being the total number of poly-
nomial terms. Table 2 displays the valueNf for different types

of the polynomials.

Four types of commonly used RBRs () (e.g., Par-

2
X1, X0, X3,XT, X1 X,

FS(Q)=J'0 o dr
1Q)
¢adr for s=1 through N4 (36)
0
Q)
f dr=r for s=Np+1
0

r(Q)
(28) = f xidr for linear polynomial (37a)
0
r(Q)
J xxjdr  for quadratic (37b)
0
rQ)
(29) f XXX, dr for cubic. (37c)
0

Using Eq.(13), integrals(37a)—(37c) can easily be integrated as
(30)

Q) 1
xidr=xPr+ =r r? (38a)
0 2"

Q)
To determine the coefficients in E€O), let x in Eq. (28) take f xixjdr=xipxpr + Eb”—r2+ Er r jr3 (380)
values through all the application points. This providesequa- 0 o2 3
tions. Then together with Eq27), a set of algebraic equations o 1 1 1
with the sizeNg result in(in the matrix form fo xixjxndr=xi"xjpxﬁr+ zgijnr2+ §hijnr3+ Zr,ir,jf,nr4
ob =[P 31
{olt =[P H e} (31) (380)
Where{ak,} is a vector consisting of the initial stress component, .o
af) at all application points. If no any two nodes share the same
coordinates, the matrixd] is invertible and thereby bj; =xi"r,j+xjpr,i
{a} =[] HoR}. (32) Gijn = bixh+xPxPr (39)
It is noted that, to ensure a healthy square matki the number hijn = by 0t X207 5.

of application points should be more than the number of the poly-

nomial terms, i.e.NaA>N,.

4.2 Transformation of Domain Integrals to the Boundary.
Substituting Eq(28) into the domain integral in Eq16) and in

terms of Eq.(12), it follows that

As for the integral shown in Eq36), since¢, are explicit func-
tions of distanceR (see Table }, first R needs to be expressed in
terms ofr which is the distance from the source pomto the
field point Q. Referring to Fig. 3, one can obtain

1 R=Vr2+sr+R? (40)
JQEijk<P,q>if}’k<q>qu)=afk Jrrﬁ—d FQATQ) yhere
(33) s= 2r’i§i
R=|x"—xA|= VRR; 41
Table 2 The number (N,) of polynomial terms | H t (41)
—or : : . Ri=xP—xA.
only Linear Quadratic Cubic A !
Two-dimensional 0 3 6 _In a similar manner, the first domain integral on the right-hand
Three-dimensional 0 4 10 20 side of Eq.22) can easily be transformed into a boundary integral

by Egs.(11), (12), and(28) as follows:
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Fig. 3 Relationship between distances

J()Eijkl(pvq){bﬁl(q) —ofi(p)}dQ(q)

ar —
=a§|frEijk| r%FS(Q) dr'(Q)

Q) 1
FS(Q):JO T{q)s_q)s(xp)}dr

0 for s=Np+1
rir for linear polynomial

bijr+5r,rr? for quadratic

1 1 _
Gijnl + Ehijnr2+ §r,il’,jr,nr3 for cubic.

(42)

Q1
f T{¢A_ da(xP)tdr  for s=1 through Ny
0

(43)

_ 10xy+ 3 sinxw/2)cogym/2) +5e
2y3+ X2+ y2In(2+X+y) + cogX) + &

in whichx=x/L,, y=y/L,, with L,=5 andL,=4 and the ori-
gin of the coordinate systelix,y) located at the bottom-left cor-
ner of Fig. 4. It is known that the weakly singular domain integral
(44) can be accurately computed using tedi-integrationscheme
([16]) by discretizing the domain into internal cells. It may be
quite difficult to use existing methods to transfer the domain in-
tegral (44) into a boundary integral. However, it is very easy to
employ Egs.(11) and (12) to transform this integral into an
equivalent boundary integral as follows:

(45)

I(p)= J L T Q)arq} (46)
r(p,Q) dn
where
r(Q)
F(Q)Zfo bdr. 47)

Sinceb is a very complicated function of andy, it is difficult to
integrate the radial integr&fl7) analytically. Instead, the function
F(Q) is computed numerically using the variable transformation
(15 and relationship(13). To compute the integral46), the
boundary of the domain is approximated using 112 linear line
elements with 112 boundary nodesee Fig. 4.

Table 3 shows the computed results at four selected boundary
nodes and four internal nodes. For comparison, the results from
the cell-integration scheme are also listed there.

From Table 3 we can see that the results fromadineenttrans-
formed boundary integral are in excellent agreement with the re-
sults from the traditional cell-integration technique. The small dis-
crepancy at some points may be due to the roundoff error of
computation. The computational time spent in therentmethod
is 42 percent of the cell-integration technique.

5.2 Three-Dimensional Cube Under Uniaxial Tension.
The second example deals with a cube, with dimensions of 10
X 10X 10, subjected to a uniformly distributed loga= 1) on the

Although the radial integral$36) and (43) can be analytically top. The bottom is fixed in the vertical direction and free in other
integrated for all the functions listed in Table 1 using relationshigirections. The material satisfies then Mises criteriorwith the
(40), it is more convenient, as done in this study, to use Gaussigield stress limito,=0.8 and the hardening moduli$’=0.1.
quadrature formulas to evaluate these integrals with the variafilee elastic properties are Young's moduliss1 and Poisson’s

transformation(15).

ratio v=0.3. The cube was discretized into 54 linear boundary

After discretizing the boundary™ into elements, the trans-
formed boundary integral&35) and (42) can be evaluated using

the standard Gaussian quadrature formulas as the basic bound=r/

integrals in Eqs(16) and(19) are performed. The coefficients;,
in Egs. (35 and (42) can be expressed in terms of initial stres:
increments by using Eq32). Finally a system of equations simi- ,

|
|
]
lar to that in the conventional elastoplastic boundary eleme <-----=--~ 5

method can be formed and solved with a Newton-Raphson ite
tive schemgsee[15]).

B

5 Numerical Examples

Three numerical examples are presented here. The first on¢p:
aimed to validate the transformation E@2), while other two are |
used to demonstrate the effectiveness of the nonlinear bound
element method described in this paper.

5.1 Two-Dimensional Domain Integral Over a Nonconvex ¢
Domain. Consider the following two-dimensional domain inte-{i
gral over a nonconvex domain as shown in Fig. 4.

b

wherer (p,q) = V(x—xP)?+ (y—yP)? and
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Table 3 Computational results at some selected points

Node 1 23 40 69 125 178 204 225
Current 17.5631 30.0857 37.7095 28.4012 24.6407 36.5790 46.3420 41.8402
Cell-integration 17.5631 30.0857 37.7094 28.4012 24.6407 36.5789 46.3419 41.8401

elements with 56 boundary nodésig. 5. No internal points are nodes are consistent with the quadratic internal cells used in the
used and all boundary nodes serve as the application points. cell-integration schemé{16]). They may not be located at the
Table 4 shows the calculated vertical displacements at the toptimal position.
of the cube using the four types of the RBFs listed in Table 1 Figure 8 is load-displacement plots for the “mean” displace-
augmented with different orders of the polynomials. Usually theent that is computed using the equatidRox, [31]), up,
constantc in the multiquadric function is problem dependent %(ucomer+2uceme9. This equation should yield approximately
([29]). Herein the element siz@) is adopted. the same displacement as a rigid footing. For comparison, the
From Table 4, it is observed that an RBF must be combinggsults from the cell-integration scheme are also plotted in Fig. 8.
with polynomials to obtain a satisfactory result. Although, the exact solution to this problem is not known, the
normalized collapse load for a rigid circular footing under the

53 Three-Dimensional Flexible Square Footing. The me condition is approximately (B27]), and it is probable that

third example pertains to the behavior of a vertically loade e collanse load for a square footing will not be much areater
square footindwith dimensionB=1), up to collapse, founded on p ted coll ? d ) 319 d 6.48 f Clbgé- '
the ground surface. This example has been analyzed by Gao Ar—ﬁg computed coflapse loads are: ©.19 and o. or

Davies [16] using the conventional cell-integration technique'.cdrationscheme an€urrentmethod, respectively. The combi-
Here it [is L],Ised tg verify the validity and demgonstrate the eqf'fe ation of the cubic polynomials with all the RBFs listed in Table

tiveness of the current method. The Von Mises yield criterion i gives very close results and from Fig. 8 we can see that they are

employed with the yield stress limitry=2C,=2 and perfect in good agreement with the cell-integration results. However, as
u . O

plasticity. The elastic material parameters &e 1000 andv shown n Fig. 8 for the resylts of TPS pnly, none of the RB'.:S can

~03. In the boundary element method model, the far-fie@ve satisfactory results without combination with polynomials.

ground surface was simply discretized using progressively |arge|F|gures 9 and 10 show the yielded nodes and deformed ground
boundary elements and part of the near-field discretization scheme
is depicted in Fig. 6 where the nine shaded elements are over the
footing and subjected to a uniform vertical pressure. Due to sym-
metry, only a quarter of the problem is analyzed. The whole
boundary element method model consists of 57 quadratic bound-
ary elements with 200 boundary nodes. In addition, 997 nodes are
placed inside the domain in the expected yield zone. Figure 7
shows the internal nodes in elevation. It is noted that these internal

I svd
—— T

e = . T T >\\\
- S = >
T~ T . o T o o
- \\\ //>\ ~ />/i/
e g i
. T |
i . A _ _
Tl o Fig. 6 Boundary elements in plan
- T }// 7 i . . . e . . . .
\\ e . - . . . . . - -
e o
- — - - | . - . . . . 3

Fig. 5 Mesh of a cube under tension

Table 4 Computed displacements at top of the cube  (the ana- e e e e e e
lytical solution is 30 )
R R3 R2 |n R R + g . . L . . . .
RBF only 27.9724 29.7168 30.2716 29.4594
Linear 30.0019 29.9948 29.9975 30.0080
Quadratic 30.0007 30.0007 30.0035 29.9905 B
Cubic 30.0002 29.9908 30.0004 29.9903
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Boca Raton, FL 33431 The characteristic frequency and bandwidth of the random response to parametric exci-
F. Riidinger ta_tion may be influe_nced by th_e excitation processes. It is de_monstrated that the effec_tive
stiffness and damping properties can be expressed as conditional mean values for given
displacement and energy levels, respectively. These properties are used to describe the
response in terms of its probability density function and its spectral density function. An
example demonstrates the accuracy in predicting change of frequency and damping of a
parametrically excited oscillator, and another example extends the method to a self-
excited oscillator with domains of negative dampifBOl: 10.1115/1.1430665
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1 Introduction stiffness and damping properties are expressed explicitly in the

. I form of conditional expectations for given displacement and en-
Many dynamic systems are exposed to random excitation wif . : - -
. . ergy, respectively. An early exact solution to a specific equation
broad-band characteristics. Examples include structures eXPOSEX

to turbulent flow from, e.g., wind, ships in random seas, and earté—v\y- obtained by Dimentbe{@]. Exact stationary solutions for a

Lake excitation of structures. For linear systems simole and faithésS of systems with both additive and multiplicative excitation
q : Y p re obtained by Lin and C&l0]. This class is termed the class

complete procedures exist for the evaluation of the statistic generalized stationary potential. It was shown by Cai and Lin

properties of the response in terms of the statistical propertiesegﬁ%and Cai et al[12] that approximate solutions can be obtained

the excitation processes, when these can be represented in t eplacing a stochastic system by an equivalent system belong-
of normal processes. For n_onllnear systems it is usually neces to the class of generalized stationary potential, for which a
to ta_ke recourse to approximate methods. In the case of SONgH tion exists. The method is known as dissipation energy bal-
nonlinear systems the most powerful method consists in represegﬁbing. The class of generalized stationary potential is discussed
ing the excitation processes as _|deal Wh'te NOISE ProCessESyatai| by Lin and Cai2]. It has been shown by Cai and Lin
whereby the state space formulation attains the properties o 13] that the method of dissipation energy balancing is equivalent
Markov process, and the probability density function of the statg quasi-conservative averaging metiigtratonovict{14]) if
space vector satisfies the Fokker-Planck equaisee, e.g., Gar- the Wong-Zakai correction is accounted for

diner[1] or Lin and Cai[2)). The joint probability density function of the state space vector

Much effort has been invested in exact and approximate SOI&'()es not contain all the statistical information of the response

tion technlques for the Fokker-_PIanck equation Co”e.SPO“d”.‘Q Pocess. The second-order statistics of the response for given time
the stationary state. The solution for an oscillator with additiv is contained in the correlation function, often represented by

excitation and energy-dependent damping was o_btamed spectral density obtained by Fourier transformation of the cor-

: . response. Cai and LiflL5] have proposed a method based on an

duced by stochastic averaging, whereby the Fokker-Planck equgsengion of the cumulant-neglect closure scheme, normally ap-
tion describes the. probability densny.of the ene(g;g., Rlobclarts _plied to obtain approximations to the higher order moments. By
[5,6]). Exact solutions for systems with parametric excitation, i nsidering the response at two different times an approximation

which the_ excitation is_ multiplie(_j with the response, are in gener the covariance function is obtained. Comparison with simulated
more difficult to obtain. A particular problem is that when thed

hvsical broad band itati . laced b id &ta show good agreement. However, the method involves a sub-
priysical broad band excitalion process IS replaced by an | ntial amount of computation and relies on the convergence of

\.Nh:ted_nm?ﬁ proceslf,dtr\l;\a/ systzerE 9?“"’“'0” must i)_e r?Od;L'ed cumulant neglect approximation. In the present paper the ap-
|fnctu flng l? bsot-(;_a_te onlg-t_ axal t?]rmsh ac_co:m Ing stkr) € E5roximate method proposed by Krenk and Robé¢t#s] for ob-
ecd g ima; #’h |n\;ve corZrelia fon in t'e ptysma proceh ng thtaining the spectral density is extended to nonlinear systems with
a?f t'a ai ])t- € ongg- axal ﬁorreg lon terms r;ai'.f? ange Mfarametric excitation. The autocovariance function at a given en-
elec |;ebsyszﬁm prgpﬁ_r |8es ?ucth as amptmg an ?hl nef?s ?S ﬁjy level is obtained by splitting the response following after a
cussed by Zhu and Lifg]. In the present paper the effec Vechosen time into a fully correlated part corresponding to free de-
_ cay and an uncorrelated part due to the white noise excitation
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ohccurrgg_aftgrbthe Sel!eCt?d tlTeh' The SPECtral c]!ensny f(l;nCtlon IS
MECHANICAL ENGINEERSTor publication in the ASME GURNAL OF ApPLIEDME- NN Obtained by application of the Fourier transform and summa-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 22, 2004jon of the contributions at all energy levels. This procedure, pre-
final revision, Aug. 13, 2001. Associate Editor: N. C. Perkins. Discussion on thgously applied to systems with additive excitatiokirenk and
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmentf%berts[lG] and Krenk[l?]) is here extended to systems with
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will R o ! . . y
be accepted until four months after final publication in the paper itself in the ASMBarametric excitation. .The effective damping of the system con-
JOURNAL OF APPLIED MECHANICS. trols the freely decaying response used to generate the spectral
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density, and the numerical example demonstrates that the damgie@dent ofX,X. In the ordinary differential Eq(5) X andW are
corresponds to that of the ideal white noise form of the equat'o%rrelated, and the produtW represents the rate of energy input

2 Probability Density and Effective System Properties by the excitation process.

A general equation of motion of a nonlinear oscillator exposed 2-2 The Fokker-Planck Equation. The joint probability

to random excitation by stationary correlated white nois@ensity p,x(x,X) of the stochastic variablesX(X) satisfy the
W, (t),Wy(t), ... may be written in the form Fokker-Planck equation. In the case @) the general formula
specializes to

X+1(X,X)=b;(X,X)W;(t) (1)
, R d a 1 do? 19
where summation over the repeated subsgripimplied. Any of  — (—X,p, ;) + =——| fpyx— 27 Py xt > —(a?pyx) | =0.
the functionsb;(X,X) that actually depends oxor X represent a 1 Xz X X ®)
parametric excitation term, while constants correspond to an ad-
ditive excitation. This equation is not easily solved for nonlinear systems of prac-

tical interest(see, e.g., the discussion by Yong and [i8] and
in,and Cai[10,19). However, a particular class of solutions—
class of generalized stationary potential—can be obtained by

writing the joint probability density functiop(x,x) in the form of
Rij(7)=E[W())W,(t+ 7)|=27S;; 6(7) (2) an exponential function

where the constant§;; constitute the spectral density matrix. Uy X) = _ S

Since the processessia]re uncorrelated at Sifferent times),/the spectral Pri(X,X)=C exp(— Y(x.%)) ©
density matrixS;; is real and symmetric. The load processes casupplemented by the condition that the internal force function
be combined into a single normalized white noise prod&’$s) f(x,x) can be written in the form

with amplitudeo(X,X) such that

2.1 Stochastic Differential Equations. White noise pro-
cesses can only be correlated at each particular instant in time, %v:ﬂi
thus the correlation function is of the form e

. ) 190° o° 9y
a(X,X)W(t)=b;(X,X)W;(t) ©) f(xl.x2)=g(x1)fza—xz+7a—x2
here the amplitude function is determined via the variance a
W pitude tunction 15 I v var swhere the functiorg(x;) does not depend ox,. Substitution of
U(x,)'()ZzquSij bi(X,X)bj(X,X). (4) these representations into the Fokker-Planck (Bljleads to the
equation

(10)

In the absence of parametric excitation the amplitude funetien

a constant. Py a
In order to identify the effective potential and damping and g(xl)x Pxx=0.

obtain the probability density for systems with parametric excita- 2 (11)

tion the state variable representatiok; (X,)=(X,X) is intro-

duced. In terms of these state variables the equation of m@tjon This relation is identically satisfied, it=(\), where the vari-

Py x o I

X
+9(X1) %

—-X
2 9%,

takes the form able\ represents the effective energy of the system
d X, Xz { 0 } A=1x2+G(x) (12)
atl X, ‘Lf(xm) oty xp WO 6) ’

. . o - andG(x) is the effective force potential function
In this equation the excitation proce®¥(t) is interpreted as

smooth, but rapidly fluctuating, an interpretation often associated x
with Stratonovich14]. G(X)Zf
The joint probability density functiop, ;(x,X) of the stochas-
tic variables K,X) is determined for an equivalent Markov pro- |, the following it is assumed that the lower integration limit
cess, obtained by replacing the smoothed white noise process.BY, pe chosen such thagx,) =0, and that, is the only root of

an ideal uncorrelated white noise process. The corresponding s9s equation. If functiong(x) and ¢(\) exist, such that10) is

chastic differential equation of Ittype is obtained by writing5)  gisfied, the system belongs to the class of generalized stationary
in incremental form and introducing additional drift terms to aChotential(Lin and Cai[10]).

count for the change af(X,X) during the time incremersee, |t is observed that the potenti&(x) is the integral of the
e.g., Wong and Zakdi7] or Gardiner[1]). In the present case, functiong(x), defined via the representati¢to). Thusg(x), and
involving only one scalar amplitude functiom, the correction thereby the effective potenti@(x), may contain contributions

g(x1)dx,. (13)

Xo

term can be written as from the excitation amplitude functiom(x,%).
2 . . - .
E do” _7 9o = 7S, b.a_bj ©6) 2.3 Effective Stiffness Probability Potential. In most cases
4 9x, 2 X, Mox, of practical interest the internal force function cannot be repre-

- - . . . sented exactly in the formil0). In these cases, an approximate
The ltotype stochastic differential equation corresponding tBrobability density can be obtained by matching the given internal

(5 is force functionf(x,x) to a representation of the forifi0). The
X, matching procedure must identify the functigfi) as well as the
Xq| effective potential force(x).
d{xi | f(Xy,X,) + Eﬂa(Xl,X2)2/r9X2 dt The Eq.(10) is a representation of the internal force. This force
4 may be considered as consisting of a recoverable part, represented
by g(x), and a dissipative part representing the damping in the
+ 0 dB(t) @ system. In the representation it is assumed that a funcf{en)
I(X1,X3) can be determined as
where dB(t) is the increment of a unit Wiener process. In the s
A . ;i : ; 19d0° o° 9y
stochastic differential equatiogandX correspond to timeat the g(xy) =f(Xq,Xp) + = —— — — (14)
beginning of the time incremeudt, and the incremerdB is inde- 4 9%y 2 9%y
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In the absence of the correction term the numerator becomes
the conditional expectation df(X,X)X, traditionally used to de-
termine the equivalent damping. In the more general case, includ-

A=const ing parametric excitation, the result9) is equivalent to that ob-

X
X = const
tained by Cai and Lif11] in a somewhat different form, by the

2.4 A Simple Class of Exact Solutions. A particular class
of simple solutions is obtained for systems where both damping
and the excitation amplitude functianonly depend on the vari-
ablesx,x through the energ¥, defined in(12) and(13). Assume
that damping is defined from a potential functidth(\) as
dH/9x=H'(\)X, and the stiffness ig(x). The equation of mo-
tion then is

) x method of dissipation energy balancing.

Fig. 1 Conditional expectations: (&) potential force via E[*|x],
(b) exponent y(A) and damping via E[*|A]

X+H' (A)X+g(X)= o (A)W(1) (20)

in such a way thag(x,) is independent ok,. In general the where o(A)W(t) is the conglomerated effect of additive and

right-hand side may depend ag. In these cases an approximatd®@rametric excitation. It is seen, that wheronly depends om,x

potential force functiorg(x) is determined as the conditional ex_through)\,_ the (_:ondltlonal average7) will |(_:ier_1t|fy 9(x) also_ as

pectation of the representatiéid) for given value ofx; , the e{fe)ctl\}e (stl)f[jness, and thus the potential in the energy is based
on G(x)=[g(x)dx.

1902 o ay The force term in the equation of motigq0) is of the form
9(X) =E| f(x1,X2) + 7 X, 2 axX| 1%) (10 permitting a simple closed form solution. Identification of the
- o ] ~ damping terms gives
The conditional expectation if15) corresponds to integration . L
with respect tax, for constantx, as illustrated in Fig. (), H' (M) =3 (N2’ (M) —3 a(N)a' (N). (21)
* This identifies the functions’ (\) as
E[*[x,]= * Pigx(X2|X1)d X . (16)
o , 2H'(\)  a'(\)
. . . P(N)= 7t . (22)
The last term i(15) can therefore be integrated by parts to give a(N) a(N)

the following conditional expectation formula for the potentia

force function, éubstltutlon of this expression into the potential forrt@tof the

probability density function gives

2 9% 7) x50 S exd - [P
49X, Py x(X,X) o) exp( fo o (8)2 dé (23)
Thus, the effective potential force functigfx) is determined as ) ) o
the conditional expectation of the internal force, including th&his class contains several of the exact solutions, extracted in Lin
Wong-Zakai correction, as it appears in the stochastic different@ild Cai 2] as special cases of the approximate solutions obtained,
Eq. (7). This approximation may be considered as an unbias€¢d-, by weighted averaging. The well-known case of additive ex-
mean value. citation alone corresponds o= const.(Caughey{3]).

When the argument dfL7) does not depend oX,, the effec-  An intuitive explanation of the simplicity of this class of prob-
tive force functiong(x;) can be identified directly, without |ems is, that for systems in which dissipation from damping is
knowledge of the probability density, i(x,X). However, in the Small, or the dissipation is nearly balanced by the energy input of
general case it may be necessary to(16h determineg(x,) in a the excitation process, the system energy changes slowly, and thus
form including parameters to be determined by an iterative prod&e modulation of the excitation process vi@\) is also slow. The
dure involving the probability densitg, ;(X,X). solution(23) is therefore of the same form as for constanNote,

The functiong(\) is determined from the requirement of equahowever, the factos(\) ! outside the exponential, which is not
energy dissipation of the given functidiix,x) and its represen- identified explicitly for o= const.
tation via (10). The rate of energy dissipation is obtained from An obvious restriction of this class of solutions is the require-
(10) via multiplication by the velocityk, whereby ment that the amplitude function of all excitation processes, de-
termined from the instantaneous variancg4y should be a func-
tion of x,x only through the variable\, defined by the system.
This restriction prevents representation of some coupling effects,

Z (9_)(2X2+ ? JXZ. t : - :
While this relation cannot be satisfied identically in general, {Egtccganr:jiftJi(c%)ncspél;Li%,t;izﬂ(grgssng?fggamplng are determined by

can be satisfied in mean for any given energy level. This corre-
sponds to taking the conditional mean @®) for given energy
level \. This is illustrated in Fig. ), showing a closed curve
corresponding to\ =const. This curve represents an equivaler Modified State Space Representation
undamped oscillation, with the effective potential force function
9(x).

The first term on the right side ifl8) is g(x)x=dG/dt and
will therefore not contribute in a stationary ergodic problem. Th

1 90?

g(x1)=E| f(x1,X3)— X1

da? o? diy )

F(X1,X2)Xa=0(X1) X~ (18)

Let the effective stiffnesg(x) be determined from the condi-
tional expectatior{17), thereby defining the system energyFor
Iéghtly damped systems, or systems in which energy dissipation

conditional mean of the energy dissipation representafigh at and input nearly balance, the change of the system energy is slow

. . . compared with a typical period of oscillation. For such systems
given energy level therefore leads to the general approxmatlor?airly detailed information about the behavior within time inter-

o2 vals of the order of a few typical oscillation periods can be ob-
dy El|f+ 2 (97) Xz|>\} tained by appealing to local similarity between the mean behavior
— = 2 ) (19) under stochastic load and a similar free undamped oscillation at
dr E[% 02X§|)\] the same energy level. This idea goes back to Stratondii¢h
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and lies behind the so-called quasi-conservative averagitiggrefore suggests the use of the stochastic differential @yrim
method, using local time averages corresponding to constant &riich the excitation has strictly independent increments.
ergy (Roberts[5,6]). The modified phase plane representation of the stochastic dif-

. . ferential Eq.(7) is
3.1 Instantaneous Angular Frequency. It is convenient to a-(7)

develop the idea of local similarity in connection with a modified z, 0 o]z, 0 0
phase plane in which free undamped oscillations are represented d{z = {Z }dt— h}dt%g dB(t) (32)
by circles(Krenk and Robertf16]). Thus the Cartesian state vari- 2 |—w 0fl%
ablesz, ,z, must satisfy the relation where the forcen associated with damping follows frof¥) and
2N =2G(x)+ X2=22+ 22 (24) the potential representatidi0) as
corresponding to the polar representation =§ ozw’(A)X—% o2l IX. (32)
z:=\2\ cose, z,=— 2\ sing (25)  The first term describes the circular motion in the modified

phase plane with nonuniform angular velocity= w(X) corre-
sponding to a free undamped oscillation, the second term repre-
sents damping vii=h(X,X), and the last term is the excitation
with amplitude functiono= o(X,X). Linear stiffness simply cor-
2,=sgn(g(x))V2G(X), z,=x. (26) responds ta» = const.
The change of the system eneryy= 1/2(Z5+ Z3) follows from
(31) by scalar multiplication with the vectoiZ,Z,). If consid-
ering the response locally as consisting of the sum of a part due to
h . excitation prior to some timeand another part with homogeneous
nuity OT the mapping ok on z,. . ' __Initial conditions att generated by the excitation aftethe energy
The instantaneous angular frequency is defined as the derivatiyg,o part without excitation after timewould be governed by
of the phase velocity, and use (#5) and(26) leads to the differential equation

in terms of radiusyZ\ and phase angle. There is a certain
freedom in choosing the modified state variabigsz,, but it
appears to be most convenient to use

As already mentioned, the integration lim in the definition
(13) of the potentialG(x) is assumed to be the only root of the
equationg(xq) = 0. This choice implies thaB(xy) =0 and conti-

_de _dz_ |g(x)| 27 dA . . Y E P B
dt~ dx 2600 S =~ Xh(XX)= =X S 0%y (M)X= 5 90%X | (33)

w

The instantaneous angular frequency can be considered as Ror linear systems and constamtthe split into independent
function of the displacement or the modified phase plane vari-additive parts is exact, while for nonlinear systems it represents
ablez, . Itis seen that the modification of the phase plane implieghly a local approximation. The rate of energy changg38)
by t_he t_ransfor_matior(26) amounts to a local rescaling of thechanges over a typical period and vanishesXer0. For lightly
x-axis with the instantaneous angular frequeniz=w(x)dx.  gamped systems the change in energy over one period is small,

The instantaneous angular frequenafx) plays an important anq it is expedient to work with an effective rate of energy
role in the relation between the probability density functionange, approximated by the expectation conditional on the en-
Pxx(X,X) of the original variableX, X and the probability density ergy\ at the initial timet. Thus the average energy change in the

Px.o(X,¢) of the polar state variables, ®. As demonstrated by part of the response without current excitation is governed by the
Krenk and Robert§16] equation

1
PrelM9)= s Pes(X,). (28) <%> e
t

1 1. :
Eazw'(x)xz—zxa&/axp\} (34)

For the class of solutions considered herg.=p, x(\), and
thereby independent of the phase angl§he marginal probabil-
ity density p,(\) of A is obtained from(28) by integration over
the phase angle,

where (), denotes time average. Substitution «f\) from (18)
then gives the averaged rate of energy change in terms of the
original system properties as

= : dA S .
PAN) =TV PN (29) <—> = —E| f(X, X)X =7 Xao2 X\ . (35)
dt 4
where the factor t
27 do The damping coefficient of a freely decaying system is defined
T(x)zf (30) by the relation
0 w(}\,go)
d\
is the period of a free undamped oscillation at energy lavel i 7. (36)

3.2 Effective Damping Properties. The state variables ) ) o )
z,,2, in the modified phase plane clearly bring out the structure of Thus, the effective damping coefficient of the decaying part of
the nonlinear system, and its relation to a linear system. In tHee response at energy levefollows from (35) as
case of parametric excitation it is important to distinguish between 2 5
the wide-bandStratonovich formulation(5), and the formulation 7 =1E f— lai)x IN|= 1<(f_ Eﬁi)x |)\>

AN . . . . N 2 2 .

(7) as a stochasti€lto) differential equation. It is seen that the N 49X, N 49X, .
effect of removing the excitation term is different in the two for- (37)
mulations. In the following the effective damping properties of the ) ) )
system under random parametric excitation will be identified by is noted that in this formula the recoverable partfgX,X)
assuming that the response after a selected tin@n be consid- represented bg(X)X does not contribute.
ered as the sum of two independent contributions: one corre-The effective damping of the system treated in Section 2.4 with
sponding to the response in the absence of further excitation, ataping forceH'(A)X and parametric excitatiorr(A)W(t)
the other as the response generated by the excitation after the tialees a particularly simple form. Direct substitution int87)
t. This argument assumes independence of the two parts, ayikes
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1( 1 d(rz) 1 1 do? 7 22
m=x|H =75 E[x§|AJ=—(H'f—— OGN S J . 43
N 4 d\ N 4 d\ ) Si(w|\) p 121 (szi_w2)2+niw2 (43)

This formula clearly displays the effective damping as consisting Finally, the unconditional spectral density is found by integra-
of the coefficienH'’ from the governing differential equation, andtion over the energy levels, using the energy probability density
a correction term- 1/4do?/d\ arising from parametric excitation. PA(A) from (29).

It is seen that the effective damping is reduced by parametric %

excitation increasing with the energy. In the case of nonparametric S(w)= J S, (w|N)pr(N)dA (44)
excitation the latter term is absent, and the effective damping is 0

independent of the excitation.

Fogli et al.[20] have proposed a method whe®(w|\) is
given by a single term of the forr®3). This approach does not
seem to capture the presence of higher harmonics for systems with
4 Response Covariance and Spectral Density nonlinear stiffness. _

The spectral density of the response is estimated by an aIOIOrcmlt IS seen _that nonlinear ej'fects can enter the spectrum via non-

mate procedure proposed by Krenk and Robgr6§ and Krenk ar:%gﬁg&?gm and nonlinear stifinesw, , and both effects
X . . . ; ged via the energy probability dengjtfA). The

[17]. The idea is to estimate the covariance function of the Veloﬁigher harmonics in the spectral densi@ vanish for linear

ity processX(t) from the local behavior of the response in aiffness, which impliess, =const, ands,=1, S3=Ss= . ..=0.

limited time interval around in the spirit of linear regression. If

the response is assumed known at timehe response at a later

time t+ 7 can be considered as consisting of two parts: a fully

correlated part corresponding to freely decaying response, an® a Examples

part generated by the stochastic excitation process within the in--l.he following examples illustrate determination of response

tervalt+ 7. For linear systems under additive white noise exc'tqiroperties of systems with parametric excitation, and compare the

tion, the two contributions are strictly uncorrelated, and thus thge  etical results with simulations carried out by use of a fourth-
covariance betweeX; andX,  is determined entirely by the first o 4er Runge-Kutta integration scheme.

part. In the present case of a nonlinear system with parametric as

well as additive excitation it is assumed that the local response Example 1. It follows from the definition(17) of the stiffness

and thereby the covariance function, can similarly be estimatédnctiong(x) that the stiffness and thereby the characteristic fre-
from the part of the response corresponding to freely decayiagency of the system may be changed by the parametric excita-
oscillations alone. A key point in this argument is that, the corrdion. This effect is illustrated by the following system, also inves-
lated part of the response is locally similar to a free undampéigated by Zhu and Lin[8] combining parametric and

oscillation. nonparametric excitation,
Following Robertq6] the free undamped oscillation is repre- . . 5
sented by introducing a harmonic representation of the free oscil- X+ wo(2¢+Wy(t)) X+ wg(1+Wq (1)) X=Wy(t).  (45)

lation velocity, i.e., a representation of the form . i .
Here Wy(t), W;(t), and W,(t) are white noise processes with

* spectral density matrixS;. It is assumed thatSy;=Sy,=0,
sin (pt=2 S; Sin(j w, 7) (39) whereby the nonparametric excitation term is uncorrelated with
=1 the two parametric excitation terms. The amplitude follows from

where the mean angular frequenoy=2x/T(\) at energy level (4),
\ has been introduced for convenience. This leads to the following

approximation for the response covariance function, (X, X)?=27(Spp+ 0gX?Spy+ 209X XS1ot+ 0GX?S,;) (46)
1 * s |2 The effective stiffness is evaluated froth7) as
Cy(7IN) =\ eXp(——nm')E —]) .
2 =1 oy 1 90(x,X)? ,
g(x)=E f(X,X)_Z —— x| =(§wo)*x (47)
x| cog Q)+ d sinQ;7) |, (40)

where the damping ratig; and the damped angular frequeriey

where 2 is the ratio between the effective stiffness and the ap-
parent stiffness of the system

of harmonic No, are defined as P=1— TwoSt. (48)
L= _W Q=j\V1- Lo, . (41) It is seen that correlation between the two parametric excitation
b 2jwy T 1 processedV,(t) and W,(t) leads to a change of effective stiff-

ness. The elastic potential is obtained by integration of the stiff-

The damping raticf;, representing theelative bandwidth of ness and the energy follows as

the harmonic component N¢.with angular frequency w, , is
wversel_y proportional tg, and thu_s thebsolutebandwidth of all A= % 24 %( Ewg) X2, (49)
armonics are equal at any particular energy lewvel
The conditional covariance functid@,(7|\) in (40) is in the The phase plane representati@3) reduces to
form of a weighted sum of covariance functions corresponding to
a linear system. The one-sided spectral density is here introduced (Ewg)x= \/ﬂco&p, X=— \/ﬁsincp (50)

via the definition ) .
by which the state vectox(x) is represented by the energy and

1 (= phase(\, ¢). The undamped free response is harmonic, and the
Sc(@)= p chx( T)cog wr)dT. (42) expectation for given energy level therefore reduces to an average
over the phase angle. The Eq.(19) for the gradient of the po-
The conditional spectral density then follows frqg0) as tential ¥A\) then takes the form
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1 2m 1 &a(x,)'()z Table 1 System parameters with S;;=5,,
—f (f(x,)’()x+——.' de
dy 27 Jo 4 X ¢ 0.0500 0.1000
—= Si; 0.0064 0.0120
d\ 1 2 1 o 2d (51) @Wojj
= — 0(X,X)“X
27 ), 2 o(X,X) 1) p 0 1 0 1
) o ) ) ) Lo 0.040 0.040 0.081 0.081
with x andx given by (50). Evaluation of the integrals gives ¢ 1.000 0.990 1.000 0.981
) v 2.000 1.985 2.153 2.122
dy Al wgt+2Tw§S,
_ 0 022 (52)

dN  27Sy+ (Twgé 2Si+3TwiSpN

This expression is _rewritt_en by introducing a reference energy is the effective damping ratio, which reduces to the parandeter
level Ao and a nondimensional parameter for W,(t)=0. ForW,(t)#0 the energy input of the excitation is

2S00 4¢ — mwoé 23Sy — TweSy biased, which leads to a reduction in the effective damping.
No=—77= 5=, V= — The energy conditional spectral density reduces to
woé “S11t+ 3wpSy; Twoé “S11t37mweSy; N )
(53) /N
. . Sx(wp\): I 2_ 222 2 2 (59)
whereby it takes the simple form T ((§wo)"— 0) "+ 730
dy v+l where the effective eigenfrequendy, enters. The integration

(54) (44 for the unconditional spectral density can be carried out ex-

dh\ - AotA’ plicitly, whereby

After introducing the nondimensional enery=\/\, integra- S(Nwy  2LulE 1 w
tion of (54) leads to the probability density function 0_ Zoe ., r=—. (60
w2 TRy
pr(N)= Y o (55) The right-hand side in this representation integrates to one. The
A (1+X)”*1’ variance of the position is given by
The distribution of\ is seen to depend on only one variable o2= E[A] - o (61)
The probability density is defined far>0. However, the mean X (Ewg)? (Ewg)i(v—1)"

value is given by Table 1 gives the parameters of two different systems under two

- 1 different loading situations. The systems have damping ratio
BN =pi= 7. »>1 (56) =0.05 and 0.1, respectively, and the excitation proce¥#gs)
v andW,(t) have identical intensity, but are either uncorrelated or
so for 0<v=1 the distribution does not have a mean value, whictully correlated.
implies that the variance of the displacement is infinite and the In each case the effective damping ratiogiven by (58b) is
idea of a stationary process meaningless. The following investigaduced by about 20 percent, independent of the correlation. The
tion therefore concentrates on systems fulfilling the requirememlative natural frequencg from (48), on the other hand, is equal

v>1. to unity for uncorrelated excitation, but reduced for the correlated
The correlation between the two parametric excitation pr@xcitation. The shape parametefrom (53b) is also reduced by

cesses is quantified via the correlation coefficient correlation of the excitation processes. The probability densities
corresponding to the parameter combinations given in Table 1 are

. Sp =p=1 57 shown in Fig. 2. The solid curves represent the theoretical densi-

p= JSi:S, sp=2 57) ties given by(55). Since the nondimensional form of the probabil-
1122 . .
) o ity density only depends on the shape parametemdv=2 for
The effective damping is evaluated £37) as all four cases, the four probability density functions are very
. 190?. 1 similar. . .

m=—E fX_Z — X\ |=2Lewo, Lo=1— Eﬁwoszzl The theoretical results are compared to results obtained by nu-

A axX merical simulation of 20,000 periods using a fourth-order Runge-

(58) Kutta integration scheme. The white noise excitation is repre-

10° 10'

mo

Fig. 2 Probability density ps(X); (@) £=0.05, wS1;=wS,=0.0064, (b) {=0.1,
wS11=wyS,,=0.012
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Fig. 3 Auto-spectral density  S,(w)wo/o?2; (&) {=0.05, wyS;1=wyS,,=0.0064, (b)
£=0.1, @yS;1= 0 S,,=0.012

sented by linear interpolation of independent Gaussian stochastic TwSy,
variables. At a sampling rate ofi2At/ wq=0.02 such a process is
very broad-banded with respect to the system. The probability
density of the simulated records are shown by crosses and dot:
Fig. 2. The theoretical results are seen to agree very well with t
results obtained by stochastic simulation. b
The spectral densities for the parameter combinations given |
Table 1 are shown in Fig. 3. The solid curves correspond to theExample 2. This example explores the response properties of
theoretical expressiof®0). The reduction of the natural frequencya parametrically excited oscillator with nonlinear damping with a
for positively correlated excitation processés=0.990 andé  stable limit cycle(Lin and Cai[2]). The oscillator is described by
=0.98) is clearly illustrated in the figure. The spectra are conthe equation
pared to results obtained by numerical simulation of 400,000 pe-

<2 for S;;=0. (62)

Bm (5®) it is seen that this corresponds to requiring positive
flective damping. The stability of this system has been discussed
x Dimentberdg 9] for the special cas8,,=S,,.

riods. The simulated spectra are given by the crosses and dots in awg ) 5
Fig. 3. The theoretical results agree very well with the results X=wo| B~ —— — X2X+ o[ 1+W(1)]X=0.  (63)
obtained from stochastic simulation, thus confirming the theoret- X4 wpX

ical prediction of the reduction of natural frequency. ) . ) o
Figure 4 shows the same simulated spectra as in Fig. 3, but herd he amplitude functiorr(x,X) for the excitation follows from
compared to the theoretical predictions that would result frofd) as
neglecting the parametric correction term in the defini(i@r of ) 4o
the effective damping coefficient, leadingdg= ¢, irrespective of 0°=2TSywoX (64)
the parametric excitation. Comparison of Figs. 3 and 4 clearly . . ) )
illustrates the effect of the parametric correction term on the shafj@€reSy is the spectral density of the white noise proces).
of the spectral density, and the accuracy of the definition of tH'e System has linear stiffness and energy funciigiven by
effective damping coefficieny, by (37). .
Finally, a few words concerning the stability of the system g =wix, \=3("+w3x?). (65)
should be added. The additive excitation term will not influence L .
the stability of the system. In the case whavg(t)=0 an exact For >0 the _d_amplng IS negative at small energy levels, and
stability limit can be obtained following a procedure described b§anges to positive damping, when the energy exceeds the neu-
e.g., Lin and Ca2] Section 6.3. An equation governing the logat'@lly damped energy level
rithm of the Euclidean norm of the state-space vector can be es- 2
tablished. This equation is integrated from Qtthettingt tend to *®@o (66)
infinity, the following stability criterion is obtained: '

10
+ p=0
A + p=l
ka .'+ + Nb
~ 5 y \ \e
<> A
8» / 8»2
e} * %0}
5
0
0.8 1 1.2
(u/(oo

Fig. 4 Auto-spectral density Sx(w)wo/o-i; (a) £=0.05, wyS11=wyS,,=0.0064, (b)
¢=0.1, 0y S11=®S,,=0.012
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Fig. 5 Probability density  p, x(x,x) for (a) @=0, (b) @=0.5, (c) @=5

Systems with this particular limit circle-type behavior have beetorresponds to the expressitfil) and the points are obtained by

used to represent vortex-induced structural vibratitRadinger
and Krenk[21]).

In the present example the excitation amplitugés indepen-
dent ofX, and thus it follows from(10) and(64) that

dy 1 ozw(z)
Free (67)
dn  7S,w; A
By introduction of the nondimensional variables
_ a ~ N AB
a= TSug A= N —awg (68)
Eq. (67) takes the simple form
d 1
—i'/j =a|1-—|. (69)
dA A

After integration the joint probability density ofX(X) follows
from (9) as

Pux(X,%) = C\* exp( —a@N). (70)

Finally, the probability density function of the nondimensional

energy\ is determined from{29) with T=27/w, as

- ) (aN) o~
PR(N) =NoPr(N) =N T Py x(X,X) = Wexp( —a@\). (71)

The factorI'(@) follows from normalization of the probability
density integral and implies that the paramegein the previous

formula is given byC = (wo/2mAo)a@*/T'(@).

It is seen that the nondimensional eneigys gamma distrib-
uted with paramete. Integrability of the probability density

px(N) requires thafi>—1, and for—1<@<0 the probability

density has a singularity at=0. For@=0 the stochastic vari-
ables ¥,X) are joint normal, and foir>0 the probability density

simulation of response records by fourth-order Runge-Kutta inte-
gration. The agreement is seen to be excellent.

In the present case of linear stiffness the undamped free re-
sponse at energy levalis harmonic,

V2N
xt=w—cos{w0t), X¢= — V2N Sin(wqt), (72)
0
corresponding te;=1,0, ... in(39). The effective damping at

energy level\ is determined from(37) by averaging over the
undamped period,

wo

L P
m=r | B~ |\ =5 aw(R-1),  (73)

whereX is the nondimensional energy introduced(&8b).

The effective damping can be either positive or negative, but in
either case its absolute value determines the rate of any transient,
and thus the spectral densi®#?d) in this case takes the form

_ 7NN 2
- 2)2

Sd(w[N) (74)

(05— w?)?+ niw®

The unconditional auto spectral density is found by weighted
integration according to(44). When the frequency ratia
= wlwg is introduced, the resulting integral is

4)\06!

w3nT (@)

S(r)= f (GN)® exp(—&N)

0
NX—1]
4(1-r2)%+ a?r3(X—1)?

The integration is carried out numerically and Fig. 7 shows the
theoretical results as solid curves for four parameter combina-
tions. Results obtained by application of the fast Fourier transform

dX. (75)

function p, ;(x,X) develops an increasingly sharper maximunio the simulated records are indicated by dots. The agreement
around the circleé?+ (wox)?=2\ as illustrated in Fig. 5. Figure between the theory and the simulated results is very good, al-
6 shows the probability density;(\) of the nondimensional en- though a small but systematic deviation appears in the two lower
ergy fora=0, @=0.5, anda=5.0, respectively. The solid curve figures witha=5. As seen fron(68a) a “large” value of @ cor-

10 10
) -2
210 10
-4 4
10 o " N 5 10 - 5 )
10 10 10 10 10 10 10
M, M,

Fig. 6 Probability density of nondimensional energy; (a) @=0.5, (b) a=5
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Fig. 7 Auto-spectral density of position; (a) @=0.5, «=0.01, (b) @«=0.5, «=0.1, (¢)
@=5, «=0.01, (d) @=5, a=0.1

responds to a “small” excitation intensit$,,, and thus these erties should be taken from the corresponding stochastic differen-
figures corresponds to a smaller stochastic contribution to motitial equation in order to obtain the appropriate split into correlated
in the stable limit cycle. and uncorrelated parts.

It follows from (75) that like the probability density function  The influence of the parametric excitation on the stiffness and
pg(X) the asymptotic behavior of the normalized spectral densidamping properties has been illustrated via the spectral density of
S,(r)wi/\oa depends only on the parametét On the other @ linear system. The theory and numerically simulated records
hand, it is seen from Fig. 7 that for identical valuezothe peak Cclearly identify a change in natural frequency and a change in the
value of the normalized spectral densﬁy(r)a)g/)\oa decreases 'esponse bandwidth, indicating a change in effective damping.

with increasinge. In fact it follows from (75) with r =1 that the 1 n€ theory has also been used to obtain the probability density

eak value is pronortional ta~2. The decrease of the peak valueand spectral density of a self-excited oscillator, which has been
b brop y P ed to represent vortex-induced vibrations. In this case the abso-

and the corresponding spreading of the spectral density is C# e value of the damping coefficient is used to represent the time

sequence of the increased intensity of the parametric excitati ; :
‘,g_ale of energy changes. In both examples the numerical simula-

process. Thus, increase of the intensity of the parametric exciE ns show excellent agreement with the theoretical results
tion leads to decreasing narrow-band characteristics of tl g 9 '

response.
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Random Response Analysis of
v.o.ni | Preisach Hysteretic Systems With

Assistant Professor, - - - - -
Civi S ineering,
et onosaaiarens - Symmetric Weight Distribution
Kowloon, Hong Kong

The present study is intended to develop a new method for analyzing nonlinear stochastic
dynamic response of the Preisach hysteretic systems based on covariance and switching

Z-.G- Ymg probability analysis of a nonlocal memory hysteretic constitutive model. A nonlinear
Associate Professor, algebraic covariance equation is formulated for the single-degree-of-freedom Preisach
Department of Mechanics, hysteretic system subjected to stationary Gaussian white noise excitation, from which the
Zhejiang University, stationary mean square response of the system is obtained. The correlation coefficients of
Hangzhou 310027, P.R. China hysteretic restoring force with response in the covariance equation are evaluated by using

the second moments and switching probabilities that are derived from the disjoint event
probability and the mathematical machinery of an exit problem. In recognizing the sym-

. J. M. Ko metry of the classical Preisach weighting function, an approximation of equal “up” and
Chair Professor and Dean, “down” switching probabilities is introduced, which greatly simplifies the evaluation of
Faculty of Construction and Land Use, the correlation coefficients. An example of the Preisach hysteretic system with Gaussian
The Hong Kong Polytechnic University, distribution weighting function is presented and the analytical results are compared with
Kowloon, Hong Kong the digital simulation findings to verify the accuracy of the derived formulas. Computation

results show that there exists a sharp drop in the mean square responses with the increase
of a hysteresis parameter, and the mean square responses are affected only in a certain
range of the Preisach weighting functiofDOI: 10.1115/1.1428333

1 Introduction tural joints([18]). Introduction of the Preisach model supplies the

?ck of a suitable hysteresis model in mechanical and structural

. . . .
Nonlinear hysteretic dampers and isolators have been W'd%yeas, which is both capable of capturing nonlocal hysteresis and

used in the past decade. In addition, there has been an InCreaﬂ"%?hematicalIy tractable. Experiments revealed that the restoring

interest recently in using smart materials such as piezoceramigs. "¢ hysteretic devices related mainly to the peak displace-
shape memory alloys, and electro or magneto-rheological flui

and may cause inaccuracy in open-loop control and instability fates of hysteresis nonlinearities. In mechanical and structural
closed-loop control. From the control perspective, it is desirable %gineering fields, the dynamic loading to which hysteretic sys-
develop hysteresis models that not only accurately capture §a@ns are subjected is usually random in nature. To date only the
constitutive response but also suit themselves to control desigjaan output of the Preisach model under stochastic input for vis-
and stability analysis. The recently popularized Preisach moqﬁjsity or after-effect has been studied by Mayergoyz and Korman
([1-4)), which is really capable of describing hysteresis nonlin{20—22). They addressed this issue by means of stochastic per-
earity with nonlocal memory, has many well-defined propertiggrpation as a discrete-time random process and a continue-time
that make it suitable for control applicatiofs]). For instance, diffusion process, respectively.
the widely used differential-type models in mechanical and struc- | this paper, we study the stochastic dynamics of a nonlinear
tural disciplines, can only represent hysteresis with local memoRysteretic system in terms of the Preisach model. A new method
([6]), and therefore do not allow the crossing of minor loopgor predicting the stationary mean square response and correlation
which can arise in real materials. As a result, models of this kingbefficients of the Preisach hysteretic systemt merely Preisach
may cause inaccuracy in transient dynamic response predictipdde) under stationary Gaussian white noise excitation is devel-
and in closed-loop control; whereas the Preisach model, due todsed. The proposed method is based on covariance and switching
nonlocal memory heredity, can accurately represent crossing fptobability analysis through the use of integral expression of the
nor loops. The Preisach model can also be extended to desciygisach restoring force. In particular, approximate expressions of
rate-dependent hystereg|8]) and degrading hysteres(g]). the correlation coefficients are formulated for the case of symmet-
The Preisach model has enjoyed extensive applications in @ Preisach weighting function, which greatly facilitate the re-
scribing various hysteresis phenomena, such as ferromagnetic ggonse analysis. An example of the Preisach hysteretic system
terials ([3,8]), piezoceramic actuatol$9,10]), shape memory al- with weighting function in the Gaussian distribution form is pre-
loy materials ([11,12), magnetostrictive actuatorg[13,14)), sented and the analytical results are compared with the digital
plasticity ([15,16]), vibration damper§17]), and semi-rigid struc- simulation to verify the accuracy of the derived formulas. The
mean square responses against the hysteresis parameters, system
parameters and excitation intensity are also studied which are sig-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  pjficant for control application.
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript receiveq and ag:cepted by the ASME_AppIie_:d Mechanics Dé Preisach Model
vision, April 18, 2000. Associate Editor: L. T. Wheeler. Discussion on the pap

should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Me : - s :
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will be The Preisach model was first presented by physicist F. Preisach

accepted until four months after final publication of the paper itself in the AsmE 1935 as a physical model of ferro_magnetic h}/Steré[gJ]é- In _
JOURNAL OF APPLIED MECHANICS. the 1970s and 1980s, the mathematical properties of the Preisach
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Fig. 1 Relay hysteresis operator
A x(f) Fig. 3 Preisach plane with interface  L(f)
M
; M" M, Yap(X)-operators are in the “down” position. The interfatet)
i ! _ /\ ) /!\ X betweenS*(t) andS™(t), as shown in Fig. 3, is a staircase line
L) n ! 12 /\ P\ & [\ & / »L  whose vertices have and 3 coordinates coinciding, respectively,
i n' Plen o\ \/ e \|/ o \V/ with local minima m, (k=1,2,...) and maxima M, (k
! | ‘ ! My =1,2,...) of thenput sequence at previous instants of time. The
i | m "k nonlocal selective-memory is stored in this way. Thus, the output
| 'm z(t) at any instant can be equivalently expressed as
i 1
% _
Z(t)= m(a,B)dadB— w(a,B)dadB.  (3)
Fig. 2 Time sequence of input  x(t) st s (1)

It should be noted that the interfatgt) is varying with the

time evolution. Therefore, the integration domai8s$(t) and
model were examined and explored by Russian mathematicig¥(t) in Eq.(3) are the instantaneous functions of time. The basic
([2]), who separated this model from its physical meaning arRreisach model is characterized by two properties: the wiping-out

formulated it in a purely mathematical form. In this way, the basigroperty and the minor-loop congruence prope(ft§,4]). The
Preisach model can be represented as a superposition of a contiiging-out property refers to the constraint that the output be
ous family of elementary rectangular loops, caltethy hysteresis affected only by the current input and the alternating series of
operatorsas shown in Fig. 1, in the following mathematical formprevious dominant input extrema, the effect of all other previous

([3,4) input values being wiped out. Following the wiping-out property,
each local input minimum wipes out the vertices whose
Z:f fﬂ(mﬁ)%ﬁ(x)dadﬁ, (1) a-coordinates are above this minimum, while each local maxi-

mum wipes out the vertices af(t) whoseg-coordinates are be-

a<p low this maximum. In Fig. 2M ={M;} and m={m;} represent

wherex(t) andz(t) denote the displacement and hysteretic restof?€ Set of dominant maxima and the set of dominant minima,
ing force variables, respectively, in the present study, 8) is a "eSpectively. It follows thaM;>M; for j>i andm,<m, for p
weighting function, called Preisach function, with support on & - The contents oM and m vary over time. The Preisach
limiting triangle S of the (, 8)-plane with linea= 3 being the Model outputz(t) is uniquely determined by the sg¥l,m,x(t)}
hypotenuse and pointag, , 8,= — @,) being the vertex. The tri- 10F t=0. The minor-loop congruence property requires that all
angleSin the half-planex< g is named Preisach plane(«, p) is equivalent minor hysteresis loops be congruent. Two minor loops
equal to zero outsid& ,(x) is the relay hysteresis operatord'® said to be equivalent if they are generated by an input varying
(Fig. 1) with thresholdsz< 3. It is a two-position relay with only monotonically between the same two extrema. Congruency be-
two values+1 and—1 corresponding to “up” and “down” posi- tween two minor loops means that one will exactly overlap the

tions, respectively, i.e. other if shifted by an appropriate vertical translation.
' AR _ It is evident from Eq.(3) that the hysteresis behavior repre-
R +1 ascendingx>a or descendingx> g sented by the Preisach model is completely characterized by the
Yap(X)= —1 ascendingx<a or descendingx<g’ @ weighting functionu(a, B). The Preisach function of a specific

hysteretic system is usually determined by identification from ex-
The Preisach model can be interpreted as a spectral decompérimental data. Both the parametric and nonparametric methods

sition of a complicated hysteretic constitutive law that has nonlrave been developed for the identification of the funcjiga, B)
cal memory, into the simplest relay hysteresis operaforg(x)  ([23,24)). The weighting functionu(a, B) also can be determined
with local memory. Given an arbitrary input sequendg) as after experimentally obtaining the set of first-order reve(sah-
shown in Fig. 2, the Preisach plaBean be divided into two sets sition) curves([3]). In the experiment, the inpu(t) is first de-
at any time instant: S*(t) consisting of pointge, B) for which creased to a value which is less thag. Then the input value is
the corresponding,s(x)-operators are in the “up” position; and gradually increased to obtain the limiting ascending brand and
S (t) consisting of points(e, B) for which the corresponding record its outpug, . At eachg value on this branch, a subsequent
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monotone decrease is imposed to obtain the first-order reversal | > )

curve with its outputz, ;. By defining the function k
Z(aiﬁ)zzﬁ_zaﬁl (4) YYVY VY
the weighting function is determined by - g o
2 - —
_ 15Z(a,p)
waB)==5 (5) Liih A0
3 Stochastic Dynamics O O

3.1 Mean Square Response.Consider a single-degree-of- X AR

freedom nonlinear hysteretic system as shown in Fig. 4. The equgg. 4  single-degree-of-freedom nonlinear hysteretic system
tion of motion of the system is written as

X+ 2%+ kx+z(x,X)=f(t) (6)

wherex denotes the nondimensional displacemé(if) represents  When the response processecomes stationary, the covari-

an external random excitatior; is the viscous damping coeffi- ance E[xx]=E[xx]=0 so that the covarianc® is a diagonal

cient; k is the linear stiffness; anddenotes the nonlinear hyster-matrix of the mean square response. For a stationary Gaussian

etic restoring force governed by the Preisach model(EQg. white noise excitatiorf(t) with intensityD/2, the correlation co-
When the external excitatiof(t) is a stationary Gaussian white efficient of response to excitation is determined mainly by their

noise with zero mean, the stationary mean response of the Pigitial relation and the correlation matriR is given by

sach hysteretic system E(f) is zero since the restoring force

output z in Eq. (1) approaches zero for a zero-mean stationary 0 0

0 D/2

Gaussian input procesg22]). De=
After rewriting the second-order governing differential E6). ) . )

in a first-order differential form of state vector, the covariance OF Stationary response of the system under stationary excita-

matrix equation of the system response to the stationary Gaus<igf: the covariance matritV is constant and thus, Ed7)

excitation can be derived using the state equation as ecomes

. (80)

. . . T T =
Wt =ELY(D Y]+ ELY(DY(1)] AWHWAT+VHVDe 0. ©)
T T Equation(9) is a nonlinear algebraic equation and differs from
=AW +W(HA + V(1) +V (1) + D (7)  the usual Lyapunov equation. In order to obtain the mean square

whereE[ - | denotes the expectation operatérW, A, andV are response from Eq9), we re-express here the correlation matrix
the state vector, the covariance matrix, the parameter matrix, ahd ©f E[zX] and E[zX], in terms of the mean square response.

the correlation matrix of hysteretic restoring force with respons&ince the Preisach weighting functigite, ) in Eq. (1) is deter-
respectively. They are expressed as ministic, the correlation coefficients[zx] andE[zX] can be ex-

pressed in the following fornq21]):

Y={§}, (8a) )
E[zx]= m(a, BYE[Yap(X)X]dadp (10)
E[x?] E[xX] _
= T = Q\B
W=E[Y Y] o] E[C]) (80)
0 1 E[Z'X]=J Jﬂ(a,ﬁ)E[%B(X)X]dadB- 11)
A_[—k —25} (89 asp
0 0 By k_eeping in m_ir_1d that the_ ele_mentary hysteresis operator
_ (8d) Yap(X) is @ two-position relay with eithet-1 or —1, the correla-
—E[zx] —E[zX]] tion coefficientE[ ,4(x)x] can be expressed as

|
E[ ¥ap(X)X]=E[+X]P{¥,5(X) =+ 1} + E[ = X]P{¥,5(x) = — 1}
= (E[X|x=alP{¥ap switching at a}+E[X|x=z]P{¥,5 switching at B8})P{¥,z(x)=+1}

+(E[ —X|x=a]P{¥ap switching at a}+E[—X|y<z]P{¥,5 switching at B8})P{¥,5(x)=—1}
= (E[X|x=0=1XlIxc (00)19at E[X|x=0=X||xc (0,8)108) P{¥ap(x) = + 1}

+ (E[ = X[x=0= [X[Ixe (0,0)]9a+ EL = X|x<0— [Xl|xc (0,819 8) P{¥ap(X) = — 1}
= (E[X|x=0]— E[|Xlxc (0.0t (E[X|x=0] = E[X|Ixc (0,81

1
=3 E[[x|]1- E[|X||XE(0,Q)]qﬂ_ E[|X||XE(O,ﬁ)]qﬁ (12)

where P{-} denotes the probability operator. The notatians=P{7,z switching ata} and qz=P{%,, switching atg}, in which
Yap(X) switching at =« (or 8) means its value jumping from-1 (or +1) to +1 (or —1). Obviously, there hold the probability
relationsP{7,5(x) =+ 1} + P{¥,5(x)=—1}=1 andq,+qz=1.

Similarly, the correlation coefficieri[ ¥,5(x)X] can be expressed as
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E[Yap(X)X]=E[+X]P{¥4p(X) = + 1} + E[ = X]P{¥ap(X) = — 1}
=(E[X|x=ax=0]P{¥ap switching at a}+E[X|y=gx<0]P{¥4s Switching at B8})P{¥,(x)=+1}
+(E[—X|x<ax=0]P{¥ap Switching at a}+E[—X|x<pgx<0]P{¥ap Switching at B})P{¥,s(x)=—1}
=(E[|X|lx=0x=0—59M @) X[ |xc (0.0) 5=010a T E[ = [X||x=0x<0 SAMB) [X|[xc (0,6) x=010p) P{ ¥ap(X) = + 1}
+ (E[ = [X||x=ox=0—59N @) |X||xc (0.0) k=010t E[1X|[x<0x=01 SN B)[X||xc (0,8 x=0108) P{¥ap(X) = — 1}
=sgr — @) E[|X]|xc (0,0),x=010a+ SIMB)E[|X||xc (0,8),x=010p

1 1
ZESgr(_ C()E[|X| |XE(O,a)]qa+ ESgr(.B)EHX”Xe(O,B))]qB' (13)

If the random excitation is a stationary Gaussian process, theThe ¥,4(x) switching ate (or B) takes place at the moment
response of the equivalent linearization system of E).is when the response processtarting from the poink, or 8 (or «)
Gaussian([25]). With the assumption of Gaussian process, thexits the semi-infinite interval—o, g) [or (a, +=)] ([21]). Based
mean values of absolute displacemenand velocityx in Eqs. on the mathematical machinery of this exit problem, the switching
(12) and (13) can be evaluated in terms of the mean square rgrobabilities P;" can be expressed as a convolution form of a
sponses as follows: series of probability density functions with only orfg,(x)

5 switching. The probability density functions are further repre-
E[|x|]= 2E[x7] (14a) sented by the corresponding probability functions withyng(x)
switching and can be determined by solving the backward Kol-
mogorov equation. It is difficult to analytically solve the Kolmog-

E[x? a? orov equation and numerical solution is usually necessary. A
E[|x||x6(o,a>]=\/g—w](l—exp{——]) (140) : ) I

Laplace transform method has been introduced to solve the equa-
tion and obtain the solution of switching probabiliti€27]).

E[x?] B? Eventually, the stationary mean-square response is calculated
E[IXlIxe(0]= S | 17X~ S (14c)  from Eq.(9) upon the substitution af,, in Egs.(10) to (13). Since
the correlation matriy/ depends on the second moments of re-
\/m o sponse, Eq9) is a nonlinear algebraic equation as pointed above.
; = An iteration solution procedure is used to solve this equation.
E[|X||XE(0,¢1)] 2 erf( \/—2]) Sgr[a) (l4d) p q

3.3 Case of Symmetric Weighting Function. For the hys-

E[x7] 8 teresis nonlinearity with wiping-out and congruency properties,
E[|X[Ixc(0,8]= f( )SQFI,B) (14e) the Preisach weighting function(a, B) possesses a mirror sym-
’ 2m V2E[X’] metry with respect to linex+3=0 on the Preisach plane, i.e.,

u(—B,—a)=wu(a,B) ([3]). The symmetric weighting function

means that the possiblg,s(x) switching events appear in

2 [x couples, and the two switching probabilities of each couple are

erf(x) = _f e Y’qu. (15) e_llmost equal since the mean response is zero. Under this assump-
V7 Jo tion and using the relatiog,+qz=1, we haveq,=qz=1/2.

where the error function er) is defined as

With the assumptiom,=qz=1/2, the correlation coefficients

It is known from Eq.(15) that erf§) is an odd function, i.e., erf E[9,5(x)x] andE[ ¥,5(x)X] in Egs.(12) and(13) become

(—x)=—erf(x). This function also has the properties erf@ and
erf(xo)==*1.

1
3.2 Evaluation of Switching Probabilities. The switching ELYap0x]= E(E[|X|]_E[|X||XE<0M]_E[|X||><E(o,g)])

probabilitiesq, andq, can be calculated by using the mathemati- 5

cal machinery of an exit problerj26]). Since there exists the _[E[x7] — Q2I2E[x2] o BRI2E[X?) 18
probability relationg,+qz=1, only one switching probability, - 8 (e te ) (18)
for example g, needs to be calculated alternatively. Consider the

time evolution of the response process. The switching probability 1

d, is the sum of disjoint event probabilities of even and odd E[¥.s(X)X]=7, E[|XI[xe ()]

numbers of switching and thus, can be expressed for different (19)

initial states as follows: -
N CES
“Vaor |

. .
SPIO+ 2 PH(U)  FapXo)=+1
=1

| ]

a.(t)= . (16) The Gaussian distribution function has been widely adopted as
B B . a parameterized expression of the weighting function in the hys-
5Po (t)+i26 Poiia(t)  Yap(Xo)=-1 teresis modeling[28,29). In the Gaussian distribution form, the

symmetric Preisach weighting function can be expressed as
where the switching probabilities of even and odd numbers are
1 p[ (a+v)2+(,8—v)2] @p<a<0
X0 —

+ .. _|J numbers of¥,, switching durin _12752¢ 252 0<p<p
Pr (=P time interval (0t)|%,4(Xo)=*1 p(a.B) °
0 elsewhere
(j=012...). a7) (20)
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whereo and v are the model parameters governing the width and

area of hysteresis loopgy= —
By substituting Eqs(18) to (20) into Egs.(10) and (11), the

correlation coefficients of hysteretic restoring force with response,

E[zx] andE[zX], can be obtained as follows:

E[x?] ( v )
———— erfl —
V327 (o +E[x?]) V2o
,BO_V) ( v E[x7]
el —\ ==
V2o Vig Y o +E[X7]
3 f(ﬂ 02+E[X2]+L E[x?] )
2o VEDE " vae VoPENA
L)_ f f(L, /szl)
V2o e i Vio ¥ o +E[X’]
/Uz+ E[xz] / E[xz]
E[x 1 o +E[x 1

E[x?] v agtv
397 erf \/E —erf] o
er%ﬁo—v )_x/io'u-H/ B
' 2o " B
V2ou+v [ f(,BO— V)
= ——||—|er
V2E[X?] V2o V2o
er9<L =2 erg(ao_” w
. \/fa"v V2E[X?] V2o s
\/ZO'UV) ]
(22)

T 2ED

where the function erg(-) is defined by

E[zx]=

e—(V2/2(02+ E[xz]))[

+ erf

agtv

+
V2o

erf

+ erf

(21)

E[zX]=

—» :
fo"v(u

+erf]

2 X 2
er@[x,y(U)]=J—;foe‘“ erfly(u)]du. (23)

In the degenerated case with the weighting parameted, the
correlation coefficient$21) and (22) become

. —E[¥] { ( Bo
=——————""eff
V327 (o2 +E[X7]) V2o

f( (2 +E[X?]
N e VT EDE

Bo o’+ E[XZ]
+erfl — ‘/20 er f( e V—E[xz] (24)
. E[X ou
Elzx= 3277 f 20’ VE[XF]
erf( )e% Po o(u)= e ” (25)
V2o V2o VE[X?]

4 Numerical Example

A numerical example is presented to verify the validity of the
derived formulas for the correlation coefficients in the case of
symmetric Preisach weighting function and to evaluate the mean
square response of the Preisach hysteretic system. In this example,
the Preisach weighting function(a, B) is taken as Eq20) with
the parametersyy=—4.0 and 8,=4.0. Different values of the
weighting parameters and v are used in numerical computation.
Figure 5 shows the hysteresis loops corresponding to the Preisach
weighting function with the parametess=0.1 andv=2.0 under
a decayed sinusoidal input.

Tables 1, 2, and 3 show a comparison of the predicted values of
the correlation coefficierE[ zx] computed by using Eq21) and
obtained from the digital simulation. The results are obtained un-
der different values of the parametersand v. A good agreement
between the two sets of results is observed, even in the degener-
ated case of the weighting parametet 0. It should be noted that
the error between the two approaches might be also due to the
approximation in generating pseudo-random numbers in the digi-
tal simulation. It is therefore concluded that the assumption of the
equal switching probabilitieg, andq in the case of symmetric
Preisach weighting function holds to a significant extent. Equa-
tions (21) and (22) are good approximation for the correlation
coefficients in the case of symmetric Gaussian distribution
weighting function, which greatly facilitate the evaluation of
mean square response of Preisach hysteretic systems.

Then the mean square responses of a Preisach hysteretic system
subjected to a stationary Gaussian white noise excitation are ana-
lyzed by means of the proposed method. The system parameters,
hysteresis parameters and excitation intensity are takek as
=1.0,{=0.1,0=0.1,v=1.0,89p= — ag=4.0 andD = 4.0 except
additional specification. The Preisach weighting function is same

Fig. 5 Hysteresis loops
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Table 1 Predicted results of correlation coefficient for weight-

ing  parameter v=1.0 (E=[zx]-analytical evaluation;
E[ zx] s-digital simulation )
E[zX] E[zx]s Error (%)
0.20 0.48376 0.48279 0.20
0.15 0.48388 0.49742 0.73
0.10 0.48393 0.49137 151
0.05 0.48394 0.49374 1.98
0.01 0.48394 0.49512 2.26

Table 2 Predicted results of correlation coefficient for weight-

ing  parameter 0=0.1 (E=[zx]-analytical evaluation;

E[ zx] s-digital simulation )
v E[zX] E[zx]s Error (%)
0.5 0.70150 0.71298 161
0.6 0.66433 0.67453 1.51
0.7 0.62292 0.63101 1.28
0.8 0.57834 0.58320 0.83
0.9 0.53166 0.53586 0.78
1.0 0.48393 0.49137 1.51
11 0.43615 0.44762 2.56
1.2 0.38921 0.40326 3.48
1.3 0.34390 0.35809 3.96
1.4 0.30087 0.31345 4.01

Table 3 Predicted results of correlation coefficient for weight-

ing parameter v=0 (E=[zx]-analytical evaluation;
E[ zx]s-digital simulation )
E[zX] E[zx]s Error (%)
0.20 0.19560 0.19579 0.10
0.15 0.19726 0.19764 0.19
0.10 0.19848 0.19888 0.20
0.05 0.19922 0.19936 0.07
0.01 0.19946 0.19815 0.66

as the above. Figure 6 shows the mean square responses against

= o : Digital simulation

5 | — Present method
P ¢=0.1

E[x?]

Fig. 7 Mean square displacement versus linear stiffness k

35
m « : Digital simulation

cy s — Present method
$=0.1

X

0.5 | L L s | L 1 L L

Fig. 8 Mean square velocity versus stiffness  k

the excitation intensityp, and Figs. 7 and 8 show the mean square

responses against the linear stiffndssinder different viscous

damping{. In these figures, direct digital simulation results ar
also given for comparison. A good coincidence between the r
sults obtained by the digital simulation and by the present meth
is observed. Figures 9 and 10 show the mean square respor
versus the weighting parametemunder different excitation inten-

sity D. It is seen that with the increase of the parametgthe .
mean square responses decrease at the outset, and then inc%

20
m » . Digital simulation
— Present method
15}
i
M 10|
%
&3]
5 -
0 L L L L L

Fig. 6 Mean square response versus excitation intensity
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Fig. 9 Mean square displacement versus weighting parameter
g

smoothly. Wheno is less than 0.03, the mean square responses
sharply drop with the increase of In the range ofr from 0.03 to

0.20, the mean square responses almost do not varyowikhg-

ures 11 and 12 show the mean square responses versus the weight-
ing parametery under different excitation intensiti. It is ob-
served that the mean square responses decrease with the increase
of the parameter, but tend to be steady wheris greater than 1.4

for the mean square displacement and 1.8 for the mean square
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Fig. 12 Mean square velocity versus weighting parameter
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Fig. 15 Mean square response versus weighting parameter
o(r=0)

velocity. Figures 13 and 14 show the mean square responses ver- o o
sus the weighting parametgy, under different combination of the ated case of the weighting parametet 0, as shown in Fig. 15,
parametersr andv. It is seen that there exists a sudden drop in thtae mean square responses decrease slowly with the increase of

mean square responses with the increase of the paragetén

the weighting parameter. Figure 16 shows that the mean square

the case ofr=0.1 andv=1.0, the mean square responses trend ttisplacement drops sharply and then trends to a constant value,
a low constant value whef is greater than 1.2. In the degenerwhile the mean square velocity varies smoothly.
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In-Plane Wave Propagation
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In the context of wave propagation in damaged (elastic) solids, an analytical approach is
developed to study normal penetration of a longitudinal plane wave into a periodic array
of rectangular defects. Reducing the problem to some integral equations holding over the
base and height of the openings, a direct numerical method is applied to give a complete
solution for various exact or approximated forms. Several figures show the peculiarities of
the structure and lead to physical conclusiof®Ol: 10.1115/1.1430235

1 Introduction in an elastic medium. Of course, this is equivalent to considering
. . . regular openings periodically distributed in a vertical screen of
In the frame of wave propagation througkolid) continuous finite thickness inside the medium. Assuming the dependence on

media with irregular distributed defects, many researches h . . -
been devoted to study the reflection and transmission propertiea%B e of the harmonic type, we will employ both continuity and

(periodig distributions in a two-dimensional context, which argnase unknowns turn out to provide a complete analytical repre-
those contemplated in the present paper, there are mainly Wy iation of the scattered field in the whole structure, including
types of approach to the scattering problem. The first one, mgfg reflection and transmission coefficients. A direct numerical
often used, resorts to well-known numerical algorithms for solnethod will then be applied to solve such integral equations in
ing certain integral equations based on the length or the surfaceQhct form (as they ariseas well as in various approximated
the defects and originated from natural boundary conditions. Thisms. Finally, several figures reflecting the numerical results will
line of research is deeply concerned in the numerous papers Rdrmit us to evaluate the influence of the physical and geometrical
formed by Achenbach et alsee, e.g.[1-5]), where several geo- parameters on the wave properties of the structure, and some in-
metric configurations, for not too high frequency, are taken int@resting remarks will be derived.
account. It should be finally noted that the incidence of a longitudinal
The other type of approach is more analytical. Along with thgave in a two-dimensional medium gives rise to the so-called
important results obtained ifi6—11]), we would also mention our in-planeproblem for the propagation of tH&\ andP-type waves
previous papers[12-16), in which a new—quite general— ([19]). This problem in connection with periodically distributed
analytical method has been introduced for various scattering prabetangular defects is here tackled analytically for the first time.
lems in theone-moderange of frequency. Starting from integral
equations based on the opening between neighboring defects and
originated by continuity assumptions, we were able to put down . .
explicit formulas for the relevant parameters by means of a mid Formulation of the Problem: Boundary Conditions
(uniform) approximation valid in that range. In many cases, we The geometrical structure is quite similar to that considered in
also solved analytically the main integral equations, thus arrivirL6]): We have an unbounded two-dimensional elastic medium in
at the complete solution of the problem. which there is an infinite, periodic array of rectangular defects
Of course, the geometrical form of the defects is crucial for alsee Fig. 1. The period of the grating i8a, the opening, i.e., the
scattering problems, whatever be the method of approach.distance between two neighboring defects 2is (around |y|
would be preferable to consider more and more irregular forms0,2a,4a,...) and thelength of the horizontal side of the rect-
(even unknowh until now being considered rather simple formsangles is 2 (aroundx=0).
such as slit-type, circular, and rectangular defects. The latter casén the assumed harmonic regime, the time-dependence implies
has been fully treated by numerical methgosengineering type the common factore™ 't in all the field variables; we omit
in an acoustic contex{17,18), and only recently by analytical throughout this indication, and prefer to express the displacement
methods for a scalar problem in elastic contéXt6]). In this field u=(u,,x,) by means of the following Green-Lametype)
paper we aim to carry on, as analytically as possible, the studyrepresentation:
rectangular scatterers in an elastic context, and precisely to con- s o de o
sider the vector problem for the normal incidence of a longitudinal uX:—(P +—, U ¢ ¥ (2.1)
plane wave onto a periodiwertical) array of rectangular defects 2 Yoay o

- in which thedisplacement potentialg(x,y) and ¢(x,y) satisfy
) ) o throughout the Helmholtz equations:
Contributed by the Applied Mechanics Division ofE AMERICAN SOCIETY OF ME-
CHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED MECHAN- Pl ax%+ Pl ay?+ k%‘P: 0, PYloxP+ o>yl dy>+ k%w: 0.
ICS. Manuscript received by the ASME Applied Mechanics Division, April 2, 2001;
final revision, August 6, 2001. Associate Editor: A. K. Mal. Discussion on the pap@&hove, w is the circular frequency, arkl ,k, denote the longitu-

should be addressed to the Editor, Professor Lewis T. Wheeler, Department of - . _
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will gﬁe‘?nal and transverse wave numbers; of coursék,=c, and

accepted until four months after final publication of the paper itself in the AsmE/ Ka=C. give the respective wave speeds of the material in con-
JOURNAL OF APPLIED MECHANICS. cern (€;>cy).
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Fig. 1 Normal penetration of a longitudinal plane wave into a
periodic array of rectangular defects 2 /X2(a—b)

assures that altj,s andr,s are real and positive; as a conse-
quence, constan®R andT can attain their full meaning aeflec-
tion andtransmissiorcoefficients, respectively, since at large dis-
tances from the defects’ array only the terms containing them,
with the given(longitudina) wave number, will remain nonvan-
ishing in the scattered field of EqR.3), (2.4).

In the central(rectangular part |x|<I, |y|<b, we begin by
writing the potentials as superpositions of their even and odd com-
ponents(with respect tax)

+ - - +
®cent™ Peenitt Peents  Peent™ Peentt Peent
and then represent them in the following mannner:

Poen(X,y) =Eg cogkyx) + 21 E; ch(p,x)cog mny/b)

3

The following (linean constitutive equations for the relevant +F§ cos{kly)+2 Fch(v,y)cog mnxil),
stress components hold throughout: n=1
Fo Py Y (2.72)
Ty = Tyx= cg( o vE VR (2.20) @
y ox°  dy B o B
PeenlX,Y) =Eg sin(k;x)+ 2, E, sh(px)cog mny/b)
Pe  Pe Po Py n=1
0y=C2| — + —% | —2¢2| —— —— (2.20)
P ox2 o ogy? 2\ ay?  axay x
+ F.c si nx/1), 2.1
O N L T2 R & Froheasians/l @m
YU R ax® o gy? 2\ 9x? " oxay ' "
(putting the constant density equal th 1 ean( XY) = E P sh(s,x)sin(arny/b)
In the considered structure, an incident longitudinal plane wave n=1
of the form ©
one=€ %, g =0 +Zl Q. shiwyy)sin(mnx/l),  (2.8)
A=

is entering from—oo, giving rise to scattered fields in the left (
<-—1), central (x|<I), and right &>I) parts. Thanks to the _ _ ) .
natural symmetry and periodicity along the problem can be YeenlX,Y) = 2, Py ch(sp)sin(ny/b)+Qq sin(k;y)
obviously restricted to the typical lay¢y|<a with a narrowing n=t
ly|<b of length 2I. By the same token, we can represent the

©

potentials in the left and right parts of this layer as follows:

0

‘pleﬁ(x,y):eikl(x+|>+Re—ikl(x+|>+2 Aneq"<x+')00&177ny/a)
n=1

(2.39)

Yer(X,Y) =, B Vsin(mny/a) (x<—1,ly|<a),
n=1
(2.30)

Prign(%,y) =Te D+ > ¢ e~ W Ncog mny/a)
n=1

(2.48)

Yign(%,y) =, Dpe " Vsin(mnyla) (x>1,]y|<a),
n=1

(2.4p)
where it holds that
qn=+(mn/a)’—k2, r,=+(mn/a)’—k5, n=1,23,..,
(2.5)

+ > Qnshiwgy)cogmnx/l)  (|X|<l.|y|<b),
n=1

(2.80)
where it holds

Pa=V(mNn/b)2—K2,  v,=(mn/1)2—K?,
sp=(7n/b)?—k3, wp=/(7n/l)2—k3

for the same reason as before.
In the sequel, we will find convenient to put

(2.9)

a,=mnla, b,=wan/b, |,=mn/l.

Further, where needed, all field variables will be labeledefis
cent(ral) or right according to the region in which they are con-
sidered. For all fields involved in the central region, we will also
distinguish, by proper labels+ or —), between the components
coming frome ., #oen@nd those coming fromp ., Yeen (Via

Egs.(2.1) or (2.2). In this connection, note that, with respect to

X, ui‘i”t, uﬁi’“, Tﬁ‘;’lt,af(i”‘ are even functions,  while

ug™, uge, 75, o are odd.

Of course, the sides of the defects cannot sustain stresses, that

in order for the Helmholtz equations to be trivially solved by eactmplies the following boundary conditions to hold in the typical

term of the above series.

Note that such representations identically satisfy the natural left

boundary conditions at the edges of the two semilayers:

Uy(X,*a)=1y(X,=a)~sin(mny/a)|y_.,=0, [x|>I.

Moreover, theone-mode assumptidor frequency, namely
0<ki<k,<(wla), (2.6)
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layer:
Txy(_lvy):‘Tlxeﬂ -Ly)
=791 y)=o9(1,y) =0, b<l|y|<a;
(2.10)

os(x,£b)=0, 7%Mx,=b)=0, [|x/<I. (2.11)
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All the capital letters in the above representations of the total
wave field denote unknown constants. FoIIowmg the guidelines of UCE“U y)= Cz kgEgcog{k1|)+(2k§— k%)Fg cogkyy)
our analytical approach, the next task is to introduce some new
(unknown functions in terms of which all these constants can be -
expressed. In this connection, if we put 2 2 ¥
+ 2bi—k3)c HE
nz [( n 2) h(pn ) n

A 91(y), lyl<b

(=Ly)= 0, b<lyla, o

+2b,s,ch(s,1) Py Jcogbpy) + >, (—1)™
m=1

97(y), lyl<b
S~ 1y)= | | (2.12) 2 Lo
0, b<|y|<a X[(=2v5—=k3)Fp, ch(vgy)
. g5(y), lyl<b
right = +
my (1Y) (0, b<ly|<a. + 21w Qpy chlwry)] (3.17)
g2(y), lyl<b
ht
(1) = [ 0. b<lyl<a (2.13) Il (RE E [—2paby H(pAl)E,
(recall Egs.(2.10), then an assumption of continuity between on2_ 2 e
neighboring regions leads to (2b = kz)eh(syl) Py Jsin(bry)
91(y) = 1o (= 1y) == 7 (Ly) + 7oy (1), +2 (=)™ 20 | oF - SN mY)
=1
g3(y)= 7551y, (2.14) )
97 (y)= o= 1y)=o5T,y) = ay), +(215-k)Qr, st(wmy)]], (3.19)
gs(y)=0o5"(Ly),  lyl<b. (2.15) .
We also put o52(1,y) =5l —K3Eq sin(kyl)+ X, [(2b7—K3)sh(pa))E,
— n=1
uen(x,b)=g; (), uL(x,b)=g, (x), [x/<I. (2.16)
These equations are the starting point of our procedure. In them, +2b,s, sr(snl)P;]cosbny] , (3.1n)
functionsgj , andgy , are physically related to the stress compo-

nents along the borderlines; the geometrical symmetry implies
they are ogld_ and even functions, respectively. Of cow3eijs §§T(X +h)= +022 [— 21,0, sh(o,b)F;
even andg,, is odd.

+(213-K3)shwyb)Qy Isin(l x),  (3.10)

3 Analytical Representations

We now aim to derive formulas for all unknown constants of
the total field in terms of the six functiorgsjust introduced. For

75 (x, + b) = +c22 (210, Shvab)F,

the sake of clarity, let us begin by calculating all fields involved in + (215 k5)shwyb)Q, Jcog I 1x)
Egs.(2.1D,—(2.16). In view of constitutive Eqs(2.2) and wave oo
field representationg.1), (2.3), (2.4), (2.7), and(2.8), we have +C2Qq ki sin(kyb), 3.1
(1Y) =5, [~ 20,8080 (283 kD) Bylsinayy, ugErxb) = E [on Shwab)Fy
n=1
(3.1a)

— 1, shw,b) Q; T ) —ky sin(k;b)Fg

right (3]m)

(1Y) =2, [2002,Cy— (227 - k3D, Jsinayy, )
(3.1 uetx,b)= >, [v,Shvb)Fy +1, SHwab)Q, Isin(l x).
n=1
(3.1n)

©

Ieft 2 2 2
(—1,y)=—c2k3(1+R)+c [(2a —k3)A,
o 22 From Eq.(2.11),, in view of (3.1i,]), we get

+2a,r,Bpjcosayy, (3.1c) =2l wnshv,b)F. +(212—k3)shw,b)Q =0, (3.2)

_ 2l.v,shv,b)F +(212—k2)shw,b)Q- =0, (3.2
O‘Qght(l,y)——clszJrcgE [(28. _kg)c —2a,r,D,]cosa,y, nUn Sh(v,b) n ( n 2) hw, )Qn ( )

Qo =0. (3.2)

(3.1d)
From Egs.(2.16), in view of (3.1m,n), by simple integration
over |x|<I| we get
7(1y) = 022 [—2paby shp,l)E;: X 9
+ —
~ (203~ K3)stis, Py Isinbyy), (319 Fo= 2Ik1sm<klb>f 9 (£)d¢ ©3
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(andJ'_|gJ(§)d§=O, that is obvious sincg, is odd, while by
integration after multiplying(2.16); by cosl,x and (2.16), by
sinl,x (m=1,2,...), we get further, respective{py orthogonal-
ity):

1 (!
vn SHvb)Fy =1y sr(wann*=Tf7|g:(§)cos<ln§>d§,
(3.4a)

1 (!
vnSanb)Fr?*'nsf(Wnb)QE:Tf |QJ(§)Sin(|n§)d§-
(3.4b)
The following values can be easily deduced fr@@xPa,b), (3.4):

L (21— K5)shw,b)

+

" 2w, shiub)
22— (1
K sio )| Gu(Ecotlnds,  (35)
(2 kg)shwyb)
22—k
= K%, sho,b) 7|gu(§)sm(ln§)d§. (3.5)

From EQs.(2.12, in view of (3.1a,c), by integration ovety|
<a we get [*Pg](5)d7=0 (obvious and —2aciki(1+R)
=[*897(n)dn, whence:

1 b
mﬁbgﬂ 7)d7.

On repeating the integration after multiplyiig.12), and(2.12),
by sina,y and cog,y (m=1,2,...
following 2X2 linear systeniby orthogonality:

R=—1— (3.6)

1 (b )
72QnanAn7(2aﬁ7k§)Bn:¥J’ gi(»m)sin(a,n)dn
2J —b

1 b
(25— k) An+ 202 By=— f gi(mcotandy
2]

that gives
2r.a,

b
”:a—cﬁfn _bgl( n)sin(a,n)dn

2a2—k3

ada, (3.78)

j g7(n)coda,n)dy,

’

L2

(2b2—k3)ch(p,)E, +2s,b, ch(s )P, =

2ap—k3 (>
Bh=— bgl(ﬂ)5|r‘(an77)d77

acsA,

220y ¢(n)coga,n)d (3.7)

aczAn - gl 7 n?77)071, .
where A,=(2a2—k3)?>—4a2q,r, is the well-known Rayleigh
function ([19]).

From Egs(2.13, by analogous procedut@ view of (3.1b,d)),
we get[*2g3(5)dn=0 and

1 b
2 f bgé'( 7)d7,

T=— ———>
2aciks ) _

(3:8)

2rpa, (0
Ch=— bgz(n)sm(ann)dn

acsA,

2 2
2a,—k5
2
acsA,

b
fﬁbgé'( n)coga,n)dy, (3.%9)

2a2-k3

Dh=——2+ aczA f gs(nm)sin(a,n)dn

2anqp

+ f gs(m)codann)dx.

aa ) (3.%)

From Eqgs.(2.14) and(2.15), by difference and summation, re-
spectively, we get

(95-9D(y) =271 (Ly),  (97+99)(y)=2055"11,y),

ly|<b. (3.10)

), respectively, we also get theSee Eqs(3.1e,f): The first equation above involves constaﬁffs

and P} ; the second one, besides these &jd, involvesF ,

, Q" , which are known(in terms ofg,) and can be substi-
tuted from Egs(3.3) and(3.53). Made this, a simple integration
of Eq. (3.10, over|y|<b gives

Eo=- : lfb 7+95)(n)d
0~ 2bkZ codk,l)| 262 7b(91 92)(m)dn
2k -K5 (1,
T sk, _lgu(f)cos(klg)dg : (3.11)

Further, on multiplying Egs(3.10, and (3.10, by sinb,y and
cosh,y (m,»=1,2,...), respectively, and then integrating ojgr
<b, we get the following X2 linear systeniby orthogonality:

1 b
=21y Shpo)E; — (207 - KD)shis, Py =5 f (g5- g (msin(by7)d,

= f (97 +9%)(n)cogb,7)dy

2bc?

(2b2—K3)(—2p2—k3) 2bZs,

f_ng(f)

2
k b2
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2py, sh(pyl)

ch(pyé) + o ch(syé) |dé,

sh(s,l)
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that gives
. Snbn cr‘(snl)J b d
"I b (93— 97 (n)sin(b,n)d7
(2b2—Kk3)sh(s,l)
+ H} [Zbcz J (97 +9%)(n)cogb,n)dn
2-1)" ', [(2bh—K3)(—2pi—K3)
+b—k§f4g”(§) 2p,shp)  CPod)
2b3s,
snsnn"“(snf) déi, (312)
. (2bi—KHch(pyl) (b .
pr=— Wﬁ;g;—gzxm sin(b,7)d7
2ppbpshipyl) [ 1 (P
- T {Zbcgfb(gﬁgg)(n)COS(bnn)dn
2-1)" ', [(2b2—KE)(—2p3—K3)
+b—k§f| . [ Zpsip) O Pd)
2b2
Sh(s |)ch(sr.§) dér, (3.1p)

where we put
+

[T =(2b2—K2)?sh(s,l)ch(pyl) — 4bZp,s,sh(pal )eh(syl).

n

To obtain formulas(3.11), (3.12 we used some results from

series’ tables:

and needed to calculate the following summations:

* 52 12

202 -k
S (" 2l Kcos )

(3.148)

- <2ki—k§>k§{

| cogk.¢) 1
2 7.2 1

Ky sin(kl) K2

“) |2 2 212 kErc0s1nt)

(2KZ—k3)k3

- <2bﬁ—k§)<—2pn—k§>l ch(pyé)
N 2p]

2pn sh(pnl)

(3.1%)
. IZwh, bils, ch(sné)
E( D" eodlnd) = 5 gt

1
Of couse, the above results should be interpreted in the sense of
generalized summatiors the Abel-Poisson typ§ 20]).

There remainEy |, E, , P,, to be calculated. Parallel to Eq.
(3.10, by summation of Eqs2.14 and the difference of2.15),
we get, respectiveluy

(95—a9)(y)=203"1ly),
(3.15)

(g1+95)(y)=27"(1Ly),
ly|<b.

In the first of these equations, the values Fgr, Q,, (see Eq.
(3.19)) in terms ofg, can be substituted from Eq$3.50). A
simple integration of Eq(3.15), over |y|<b gives, in view of
(3.1n)

Bo = 4bcsks sm(kll)f

while, on multiplying Egs.(3.195; and (3.15, by sinb,y and
cosb,y (v,m=1,2,...), respectively, and integrating o\gt<b,
we get the following X2 linear systenby orthogonality:

—g7(mdn, (3.16)

2b,(—1)" S
(91+92)(77)5|r‘(bn77)d77+T(2 prt+k3)

- " cogmx) 7 ch(ax/b) 1
mzl -1 p?m?+a? ab sh(wa/b) a?|’
(3.13)
> (~1)Mcogmx)=—1/2, >, (—1)™m?cogmx)=0,
m=1 m=1
|
p
= 2pqbn Ch(pa) By — (207 = K5)eh(si) Py =25
Xfl () sh(sng)_sh(pni)}
9 Sis ) shipy)
1 b
(2b3—k3)sh(p,l)Ey, +2s,by, sh(snl)PnERJ b(ga’*gf)(n)cos{bnn)dn,
\ -
that gives

(2b2—K3)ch(s,l)

T T f(gz D) (m)cosbyn)dy
2s,b,sh(s,l)
+ ik

1 b
[Zbcgfb(gﬁ g3)(n)sin(b,7)d 7

2bn( - 1)n
bkZ

sf(snf)_sf(pnf)}dg]

|
2, 1.2 -
(an+k2)f7|g”(§) sh(spl) sh(pgl)

(3.17a)

Journal of Applied Mechanics

2pnby ch(py

P =—
n 2bc3Il,

|
)J (95—97)(n)cogb,n)dy

(25— K9)shpy))
1,

1 b
(Zbcgfb(gﬁgé)(n) sin(b,7)d7

sh(syé)

an( - 1)n
shisyl)

b2

<2pﬁ+k§)f 9% ()| Sah)~ shpul)

(3.17)

sh(pné)} g]

where we put
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[T = (202 K2)ship,l)ch(s,l) — 4b2p,s,sh(syl eh(pyl).

n

To obtain formulas(3.17), we used these results from series’

tables:

7 shlax/b)

- mmsm(mx)
2, (-1 ~ 2b? sh(walb)’

m=1 b°m°+a

0

E (—=1)™msin(mx)=0,

m=1

(3.18)

> {[(212=K2)ch(vb)F;f — 2wl chiw,b)Q; ]
n=1

X codlx)—(—1)"[(2p2+K3)E, ch(pyx)
+2s,b,P; ch(s,x) 1} + (2k—k3)Eg cogkyx)

=k3F g cogk.b), |x|<I. (4.8)
Now, by substituting in the above three equations the values for

all (capita) constants involved from the formulas of the previous

section, we obtain the first&3 system of integral equations in the

unknowns §7+99), (g5—g7), g, , that can be written as fol-

and needed to calculate the following summati@ee the remark |gws:

after Eqs.(3.149):

mIm(215—k3) m< n—K3) ».Sh(Pyé)

2 (V" Sinln)= 5 5 (2P S
(3.19)

WIm(215-K3) shisyé)

_ 2
E (1) Sin(l é) <ZPn Ko Shis.)

This derivation completes the aim of the present section.

12 +sh

4 Reduction to Integral Equations

As field equationgalong the edges of the central part of th
layen, we will employ continuity assumptions for the displace

ment field between neighboring regions, namely

ULy =uE=Ly), wE Ly =uELy), (4
cent_l y) ucent_l’y)’ u;‘/ight(l’y):ui:/entl’y)’ |y|<b,
(4.2)

and the(traction-fre¢ boundary condition{2.11); as follows:

oy T(x,0)=0, o§(x,b)=0, |x|<I. (4.3)

Due to convenience for further calculations, we prefer to derive
from these six equations twalisjoint) 3X3 systems of integral

equations: one, involving the plus componefits of the central
fields, for the unknown functionsg{+g35)(y)., (93—97)(y).
g, (x), — and one, involving the minus componeits), for the

unknown functions §5 —97)(y), (97+95(y), 9, (X).
Then, by taking the dn‘ference &8.1) and summation of4.2),

we get the following two equations, respectively,
uwLy) — U (= 1Ly) =2uig L),
g™ (1, y) + ult(—1,y)=2us"l y),
which, in view of Eqs.(2.1), (2.3, (2.4), (2.7), (2.8), imply

(4.4)
(4.5)

> {2[pn shpal ) E;: + by shis) )P Tcogbuy) +[dn(An+Cy)
n=1

+ an(Bn_ Dn)]cos{any)}

=ik (T—1+R)(+2k, sin(k;NE; , |y|<b, (4.6)

> {2[b, ch(pal E; +5, ch(syl) Py Isin(byy) —[@n(An+Cp)
n=1

+r,(By—Dp)]sin(ayy) — 2[Fr v, shv,y)
— QI shiway) (= 1)+ 2k, Fg sin(k;y)=0, |y|<b.
4.7

From Eq.(4.3);, in view of Egs.(2.2), (2.7), (2.8), we also get
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b

Kif 7=y)(g5—gD)(n)dn

b
j—b 1(n— Y)(gl"‘gz)(??)d??"‘j

|
+ f_les(f,y)gJ(é)dfz—2ik1. ly|<b, (4.9)

b b
fﬁszﬁ( 7=y)(97+9z)(ndn+ jﬁngz( 7=y)(9;—-90)(n)dn

|
+ f7|K53(§,y)gJ(§)d§=0, ly|<b, (4.108)

b b
e_j_bKL(X, 7(91+93)(n)dn+ f_bKéz(X, 7)(9;—91)(n)d7n

|
+j Kas(x,6)g, (£)dé=0, [x|<I, (4.118)
-1
if we define the kernels
N _atar’(kll)+|b_ k5
Kll(y)_—zabklci Z 3, co8ay)
o Pash(pal)shis))
—ta Eu cogbyy), (4.%)
2N n
1« 2a2 —k2 2q,1 1
KiAy)=~2 E “ay sinay) + -
n= 2

(2b;—k3)ch(p,l)sh(s,l) )

S\ 28,P, Shpal)eh(s,l) —
x2

HJr n
X sin(bny), 4%
c5—c?
Kia(X,y)= mcos{klx)
2b%s, Sh
L S
sh(s,l)
(2b3—k3)(2p3+K3)
B 2pn25|‘(pn|) 2 Ch(an) COE(bny), (491)
K;l(y) = Kfz(y), (4.103)
k3 < Snch(pal)ch(s,)
K;Z(y): b_(fg ngl pl‘[—Jrcoqbny)
+—22 3cosan), 4.1

ac; n= 1A
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s [2ake n , sin(k,y)
Koa(X,y)= —g Z si‘(v b) vny)— msﬁwny)}(—l) coglx)— Tsin(k;b)
4 2 28,y Sh(Pl) chisyl) — (2b7—k3)ch(p,l)sh(s,l) [ 2b7s, (2b7—K3) (2P +K3)
= I, shs,l) ST o0 Sy o)
X (—1)"b, sin(b,y), (4.1d)
[
+ 1 + =
Ka(x,y)=— EKls(X.y), (4.11) > 12[b, sh(p,)E; +s, SH(syl )P, Isin(bay) +[ay(A,—C)
n=1
o +rn(Bn+Dn)]Sin(any)}=01 |y|<b; (4.15)
K32(X y)= = kZ)Ch( pnl)ch(syx)
—(2pn+k%)ch(snl)ch(an)]SnbnSin(bny), Z {[(212—K3)ch(v,b)F,, + 2wyl ,ch(w,b) Q, Isin(1,x)
411) "
(—1)"[(2p2+K3)E,, sh(pnx)+2s,b,P,, sh(s,x)]}
k (2¢5—c5)%k, s o
Kaa(X, &)= cot(klb) W cogky(x—§)] +(2ki—k5)Eq sin(kix)=0, [x|<]I. (4.16)
+ iz E {4Iﬁwn cth(w,b) Substitution of the involved constantas beforg finally gives
k3 7=1 rise to the following X3 system of integral equations in the un-
(212—K3)? knowns @3—97), (91+93), 9y :
——, Cth(vnb) |codln(x—4)]
E 1 [ 2bis, Jb Ku(n=y)(93-97)(ndn+ fb K 7—y)
bk2 T | shisy) Sené) b b
|
_(K)@Patky) 5)} X+ (ndnt | Kty (©ae=2ks,  Iyl<b,
2p, shipyl) " -
X[ 4b2p,s, Sh(p,l)ch(sX) (4.1%)

—(2b2—K3)(2p2+k3)shs,)ch(px)],  (4.11d)

b
K‘—)"—")d+fK‘—)T+T d
and recall the evenness or oddness properties of funagions —b 2= Y)(8z =g (mdn ~b A=Y@+ e (mdn

Parallelly, by taking the summation ¢4.1) and the difference

. |
of (4.2), we get, respectively, +f Ko(£,y)05 (6)dé=0, |y|<b, (4.18)
—1

UL y) + U (= 1Ly) =2ugLy), (4.12) b

b
ﬁbKa_l(X, 7)(9z—91)(mdy+ J,bK';Z(X‘ 7)(91+0z)(7)dn

rlght(| Y) Ieft(_l y) 2ucent| Y) (4.13) | B B
+f IK33(X1§)QU(§)d§:0, Ix|<lI, (4.1%)
which, together with Eq(4.3),, lead us to the following three
equations:
where we put
> {2[pnch(pah)E, +bych(s,h) P, Tcogbyy) — [dn(Ay— Cp) _ . _ib—acottk,l) - Gn
n=t K1i(y) " 2abk  a 2 A, coga,y)

+an(B,+Dy)]cogayy)+2[F, I, ch(v,y) -
pn ch(pal)eh(s,l)
+Qp W, chiwny) 1(—1)" =ik (T+1-R) Th& T o coghb,y),

—2k; cogk NEg ,  |y|<b; (4.14) (4.170)
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- 1 < 2a2—k3—2q,r =\ 2s,pn ch(pal)sh(s,l) — (2b2—k3)ch(s,)shp,l)
K12<y)—a—cgn21 A—n”nansm(any)+ 2 — - - TN n_2 " b, sin(b,y),
= n= n
(4.17)
. 4 < shispx)  sh(pyx) 25,pn Shsyl)ch(pyl) — (203 —k3)ch(s,l)sh(p,l)
_ 2 n 2 _1\n
KlS(X!y)_ bkg nZl (Zp +k2) S”Snl) Sf(pn|) bn Cos(bny) H; ( 1)
2 < [2w,chiway) (25-K)chway)|
e Z}l SHw D) S SHoD) (—1)", sin(l,x), (4.17d)
I
Koi(y)=K(y), 4.1% b 2abk,c?
A=Ay e [ wrranman-—2iiome s, @oo
- -b 1
iy 2 srrpnnsfrsnnsn cosby)
2y bc2 nY 2abk,c?
B f (93—97))(mdn= 2lklm (4.2M)
* Eg nzl codayy), (4.18)  from which, by Eqgs(3.6), (3.8) the searchedexplicit) formulas
for the low-frequency approximation are easily derived:
(2 Pn k%)

Kas(X,y)= —E( 2 [sh(p,l)sh(s,x)

—SV(SM)SV(PnX)]Snbn Sin(bny)v (4-1&0

- 1 < (-1
Kai(x,y)= m E T[‘l’bnpnsn ch(ppl)sh(spx)

n=1
—(2b2—k3)(2p2+k3)ch(s,l)sh(p,x)]cog byy)
2c2—c1

4bczc1 sm(kll)sm(klx)’

(4.1%)

KsAX,y)=

bcz 2, H_ —k3)sh(p,l)sh(s,x)

— (2p3+k3)sh(s,l)sh(pyx)Isab, sin(byy),
(4.1%)

Kaa(x,€)= bKZZ 7[<2b2 k2)(2p2+k2)Sh(p,l)sh(s,x)

—(2pa+k3)2sh(s,l)sh(pyx)]

sf(sng)_sh(pné)}
sh(spl)  sh(pal)

L
e {4Iﬁwn cth(w,,b)
Ikz n=1

(217-K)?

Un

cth(vpb) |cogl(x—&)]. (4.19)

b27a2
 a2+b2+2iabcot(2k,l)’

B 2iab
(a2+b?)sin(2k,1) + 2iab cog2k,|)

(4.21)

5 Numerical Analysis and Physical Remarks

In order to investigate the wave properties of the structure in
concern with respect to the involved geometrical and physical
parameters, we have developed a direct numerical algorithm for
solving the two(disjoint) systems of integral Eqg4.9), (4.10),
(4.1 and(4.17), (4.18, (4.19. This algorithm is based upon the
classicalco-locationtechnique of thdBoundary Element Methods
(see[21]). We have focused our attention to formul@s6) and
(3.9 for the reflection and transmission coefficients, respectively,
and along all computations we have always verified thatbtde
ance of rates of energi€$19])

[RI?+|T|?=1 (5.1)

actually holds; that is what is commonly made to control the pre-
cision of some numerical resultsf. [1-5]). Note that formulas
(4.2)) for the low-frequency case identically satisfy this balance.
The elastic material taken into account is theminum for it,
¢,=6200m/s anat,=3080m/s.

First of all, we have studied the influence on the reflection
properties of the physical variablegi(=g5)(y), (97+93)(Y).
g, (x), which represent the normal and tangential stresses along
the borderlinex= =1, and the amplitude of the normal vibration
along the traction-free surfacg=b. A typical example of the
computations is shown in Fig. 2, where the behavior of the reflec-

Once given a solution to the above systems, the scattered fieli@s coefficient versus the frequency parameter is displayed for a
would directly follow from the equations of Sections 2 and 3; notgarticular(squarg geometry (/a=b/a=0.5). Line 1 is related to
this in particular for the reflection and transmission coefficient§e exact solution of the two>33 systems, which amounts to a

given by Egs.(3.6) and(3.8), respectively.

full consideration of all the quoted variables, while line 2 and line

In this connection, we conclude the analytical development I8/ are obtained by assumirg; ~0 and g7,g7,g, ~0, respec-
applying a standartbw-frequencyapproximation to the integral tively. To neglect the normal vibration along=b requires of
systems in order to derive formulas for the quoted coefficients @ourse not to consider the field equations originating from the
which the dependence on frequency appears explicitly. To thigction-free boundary conditior{d.3), so that the second case is

aim, we can consider only Eqgl.9) and4.17) (that are related to
the continuity ofu, through the borderlines= *=1), and in them
we keep as main asymptotic terms the first fractioigf for Eq.

(4.9), and the first fraction oKy, for Eq. (4.17) (see Eqs(4.%),

(4.17)). Thus, Egs.(4.9), (4.17) attain the following simple

forms:

186 / Vol. 69, MARCH 2002

treated by solving only the two>2 systems(4.9), (4.10, and
(4.17), (4.18 with g =0. Analogously, to neglect the tangential
stresses along= =1 requires not to consider the field equations
originating from the continuity condition§4.2) on the vertical
component of the displacement, so that the third case is treated by

solving only the two equation&t.9), (4.17) with g7,95,9;, =0
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1.0
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0 0.5

Fig. 2 Reflection coefficient
ak, (c,/¢,=0.497, b/a=l/a

=0.5). Line 1: exact solution

1.0 akl 1.5

|R| versus frequency parameter
(from

T}
Z
0.8
0.6 s
0.4} 2
1
0.2+
| | | |
0 0.5 1.0 ak 15

Fig. 4 Transmission coefficient |T| versus frequency param-

3X3 sytems (4.9), (4.10), (4.11), (4.17), (4.18), (4.19)); line 2:  eter ak, (c,/c;=0.497, l/la=0.5). Line 1. b/a=0.1; line 2: bl/a

approximated solution  gF=0 (from 2 X2 systems (4.9), (4.10),
(4.17), (4.18)); line 3: approximated solution g7 ,g7,~0(from
Egs. (4.9), (4.17)); line 4; low-frequency approximation (from
formula (4.21)).

=0.25; line 3: b/a=0.5; line 4: b/a=0.75; line 5: b/a=0.9.

one-mode regime; in the second case, due to the smallness of the

obstacle, one would actually expect a more smooth behavior of
the reflection propertigs
Recall that such equations are related to the continuity conditionsAnyway, we note that, perhaps excluding line 4, the reflection

(4.1) on the horizontal component of the displacement.

coefficient tends to the maximum value when the frequency ap-

We can observe that line 2 is very close to line 1, that meangeoaches the end of the one-mode regime even for a limited wide
weak influence of functiong,, (i.e., of normal vibrationon the opening; in fact, the limiting casb/a=1 does not imply the
reflection properties; line 3 is less close to line 1, and this impligdsence of obstacles at all, since in every case there remains a
a slightly greater, but not significant, influence of functigjsand  Periodic array of slit-type cracks parallel to the direction of the

g5 (i.e., of tangential stresses
Figure 2 also shows an interesting feature of the structu
namely the existence of @hor) range of frequency in which the

structure admits gassing bandf frequencies around the value
ak;~1.3, very close to the end of the one-mode intefaatually,
ak,;=ak,c,/c;=0.5ak,<0.5m=1.5). For comparison, we have
also reported, as line 4, the graph of the functigh versusak,
from Eq. (4.21): it is evident that it is a rough precision of the
classical low-frequency approximation even for a small frequen(ﬁf.’
In Fig. 3 the behavior ofR| versus the frequency parameter is/
again displayed from an exact solution of the fuk3 systems,
but for different values of the relative openimiga (I/a=0.5).

Besides the general remark that an arbit(@sriodig structure of 1.0

obstacles cannot provide any wave reflection in the limit of van- 7| - =

ishing frequency, we can first observe that “closed” structures 0.8 =
suddenly attenuate the transmission as soon as frequency begins 2

to increasesee the great initial slopes of lines 1 and @d keep 0.61 3 4
quasi-locked the waveguide for greater frequencies. Reflection 04l

properties generally increase with increasing frequency and ob- ’

stacles; however, this figure shows that even for very small open- 02l

ings there are still sharp peaks, with a sudden decrease of the

reflection, just in the neighborhood of the same critical value I ‘ ‘
ak;~1.3. The existence of such a passing band seems to be ex- 0 0.25 0.5 0.75 b/a 1.0

cluded for lines 4 and 5, depicting larger and larger openings
(however, in the first case, it could be located just out of t

incident longitudinal wave. The free crack faces cannot sustain the
rléormal stresgr, (which obviously is not trivigl, and therefore the
wavefield is quite different from what it would be in a noncracked
reflection coefficient is very small; this means that the consider8£dium. . .

Figure 4 merely repeats the contents of Fig. 3, but making
reference to the transmission coefficient; a good satisfaction of
Eq. (5.1 is evident.

The remaining figures also are related to exact solutions of the
full systems. Figure 5 shows the behavior of the transmission
efficient with respect to the relative openibgn, for different
alues of frequencyl(a=0.5). For not high frequencies, one

g. 5 Transmission coefficient
bla (c,/c,=0.497, I/a=0.5). Line 1: ak;=0.25; line 2: ak;

| T| versus relative opening

=0.5; line 3: ak,=0.75; line 4: ak,=1.0; line 5: ak,;=1.25.

1.0 1.0
B 7]
0.8 ) 0.8} 1 1
2
0.6 3 0.6
3

0.4} 4 0.4} 2
5 4 4

0.2 0.2}
3

{ | | L L | | |

0 0.5 10 ak L5 0 0.5 1.0 15 ¢/a 20

Fig. 3 Reflection coefficient |R| versus frequency parameter
ak, (c,/c;=0.497, l/la=0.5). Line 1. b/a=0.1; line 2: bla
=0.25; line 3: b/a=0.5; line 4: b/a=0.75; line 5: b/a=0.9.

Journal of Applied Mechanics

Fig. 6 Reflection coefficient |R| versus relative length of rect-
angles /l/a (c,/¢c,=0.497, ak,=0.75). Line 1: b/a=0.25; line 2:
bla=0.5; line 3: b/a=0.75; line 4: b/a=0.9.
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1.0

0.8

0.6

0.4

0.2

L0 15 f/a 2.0

Fig. 7 Reflection coefficient |R| versus relative length of rect-
angles //a (c,/c,=0.497, b/a=0.5). Line 1: ak,=0.25; line 2:
ak,=0.5; line 3: ak,=0.75; line 4: ak,=1.0; line 5: ak,=1.25.

would expect amonotonig increase of the transmission proper-

ties with the opening increasing, and this is actually reflected in

References

[1] Achenbach, J. D., and Kitahara, M., 1987, “Harmonic Waves in a Solid With
a Periodic Distribution of Spherical Cavities,” J. Acoust. Soc. ABL, pp.
595-599.

[2] Angel, Y. C., and Achenbach, J. D., 1987, “Harmonic Waves in an Elastic
Solid Containing a Doubly Periodic Array of Cracks,” Wave Motidh, pp.
377-385.

[3] Achenbach, J. D., and Li, Z. L., 1986, “Reflection and Transmission of Scalar
Waves by a Periodic Array of Screens,” Wave Moti@,pp. 225-234.

[4] Angel, Y. C., and Achenbach, J. D., 1985, “Reflection and Transmission of
Elastic Waves by a Periodic Array of Cracks,” ASME J. Appl. Med®2, pp.
33-41.

[5] Achenbach, J. D., and Li, Z. L., 1986, “Propagation of Horizontally Polarized
Transverse Waves in a Solid With a Periodic Distribution of Cracks,” Wave
Motion, 8, pp. 371-379.

[6] Malin, V. V., 1963, “Theory of Strip Grating of Finite Period,” Radio Eng.
Electron. Phys.8, pp. 185-193.

[7] Jones, D. S., 1986Acoustic and Electromagnetic WayeSlarendon Press,
Oxford.

[8] Collin, R. E., 1991 Field Theory of Guided Wave2nd Ed., IEEE Press, New
York.

lines 1-4. For higher frequencies, the response of the structure o) Lewin, L., 1975 Theory of Waveguide8utterworth, London.
the incident wave becomes more complex, and this probably exto] Twersky, V., 1986, “On the Scattering of Waves by an Infinite Grating,” IEEE

plains the nonmonotonic behavior of line 5.

Trans. Antennas Propagt, pp. 330—345.

Finally, Figs. 6 and 7 display the influence on the reflectior{11] Miles, J. W., 1982, “On Rayleigh Scattering by a Grating,” Wave Motidn,

coefficient of the relative length of the obstacles. Note that the

values of the physical and geometrical parameters involved a

such that, in the one-mode regime, the longitudinal wavelength

Ni=2mw/k,; keeps always greater tharl Zof course, it holds
throughout\ ,>2a=2b). In Fig. 6 we have four lines for differ-
ent values of the opening/a and a fixed frequency; unexpect-

pp. 285-292.
Féz] Scarpetta, E., and Sumbatyan, M. A., 1995, “Explicit Analytical Results for
One-Mode Normal Reflection and Transmission by a Periodic Array of
Screens,” J. Math. Anal. Appl195 pp. 736-749.

[13] Scarpetta, E., and Sumbatyan, M. A., 1996, “Explicit Analytical Results for
One-Mode Oblique Penetration Into a Periodic Array of Screens,” IMA J.
Appl. Math., 56, pp. 109-120.

edly, the behavior is nonmonotonic: in fact, lines 1 and 2, reflect-14] Scarpetta, E., and Sumbatyan, M. A., 1997, "On Wave Propagation in Elastic

ing a more closed structure, point out a short range of the length

which the reflection properties suddenly decrease; and lines 3 ahd
4 show an opposite property. However, exceeding some critical

in Solids With a Doubly Periodic Array of Cracks,” Wave Motio2, pp. 61-72.

] Scarpetta, E., and Sumbatyan, M. A., 2000, “On the Oblique Wave Penetration
in Elastic Solids With a Doubly Periodic Array of Cracks,” Q. Appl. Mathg,

pp. 239-250.

values Ofl/a' the reflection coefficient seems to become aga"ﬂlG] Scarpetta, E., and Sumbatyan, M. A., “Wave Penetration Through Elastic Sol-

smaller for larger openings. In Fig. 7 there are five lines for dif-

ids With a Periodic Array of Rectangular Flaws,” MECCANICA, in press.

ferent values of the frequency and a fixed opening. Some simil@r7] Shenderov, Ye. L., 1970, “Propagation of Sound Through a Screen of Arbi-

remarks as above also apply to this figure; it is worth noting that

higher frequencies appear to imply a periodic behaviol Rjf
versusl/a.

Acknowledgment

trary Wave Thickness With Gaps,” Sov. Phys. Acou&, No. 1.

[18] Solokin, N. V., and Sumbatyan, M. A., 1994, “Artificial Layer,” Res. Nonde-
struct. Eval.,6, pp. 19-34.

[19] Achenbach, J. D., 1973\Vave Propagation in Elastic Solidslorth-Holland,
Amsterdam.

[20] Gel'fand, L. M., and Shilov, G. E., 1964eneralized Functions/ol. 1, Aca-

demic Press, San Diego.

This paper has been written under the auspicies of G.N.F.M. ¢$1] Banerjee, P. K., and Butterfield, R., 198oundary Element Methods in En-

the ltalian I.N.D.A.M.

188 / Vol. 69, MARCH 2002

gineering SciencesvicGraw-Hill, New York.

Transactions of the ASME



Low Reynolds Number Slip Flow
oY 1 in a Curved Rectangular Duct

Departments of Mathematics and

Mechanical Engineering, The radially symmetric, steady, slow viscous slip flow through a curved duct of rectangu-

M'Egs'?i';nsstisg UM”:V:E;Z% lar cross_se’ctio_n is stuc_ii_ed. The S_tolges_ equation is solved ysing eigenfungtion expans_ions
M]em ASME and Navier’s slip condition. As slip is increased, the. location of.the maximum ve!oc!ty
' moves from near center to the outer wall. The minimum velocity occurs at the inside
corners. It is found that both slip and curvature promote the flow rate but not necessarily
the mean velocityfDOI: 10.1115/1.1445142
Introduction Solution

The flow in a curved duct is a fundamental fluid dynamic prob- Figure 1 shows the cross section of the rectangular duct whose
lem studied by numerous authdisg.[1]). Invariably the no-slip centerline has a radius of curvatureRfThe duct has dimensions
condition between the fluid and the duct wall is assumed. Ho®aR in width and DR in height. Fully developed flow is as-
ever, there are cases where partial slip does occur and the no-slimed, since for low Reynolds numbers the entrance length is
condition must be relaxed. The fluoroplastic covering, such &mited to one width. Thus the present results also apply to a finite
Teflon, resists adhesion. Some surfaces are coated with a théttion of a curved duct, connected by straight ducts. The govern-
layer of another fluid, be it a lubricant, mucous, or injectant. Sonieg equation is the Stokes equation
surfaces are rough or porous which are modelled by a smooth
surface with some equivalent slip. Lastly, the fluid may be par- n l _ 1+ _ _E )
ticulate. As a whole it behaves as a continuum, but on a solid U U 2Tz
boundary slip may occur. Examples include blood flow in moder- ) ) ) )
ately small vessels, where near the boundary the blood is red-¢ifjerev is the azimuthal velocity normalized by the pressure gra-
free. Also there is a hydrodynamic slip regime for rarefied gassg&§nt factor (-Rp,/s), (r,6,2) are cylindrical coordinates nor-
when the Knudsen number is nonzero but sra]). malized byR and is the viscosity. The pressure gradllem,tlls

In all of these partial slip cases, the bulk of the fluid may bgonstant due to azimuthal symmetry and is negative if the
regarded as Newtonian and the no-slip condition is supplanted glirection velocityv is to be positive. For Stokes flow the other

the leading order expansion relating slip with the shear stress V€l0City components and the other momentum equations are iden-
tically zero. The boundary conditions are the Navier condition Eq.

(1) applied to the four walls.

au’ Due to symmetry about=0, the solution of Eq(2) can be
u'= o (1) expressed in terms of the even infinite series
. . L L r,z)= fo(rycog Bnz 3
whereu’ is the tangential velocityy is the normal direction to the v(r.2) nzl n(r)c0s Bn2) @)

surface pointing into the fluid, anN>0 is the slip coefficient. . . . . .
The condition Eq(1) has been attributed to Beavers and Josep¥nereB, is an eigenvalue. The slip boundary conditionzenb is
but it is more appropriately called the Navier condition since

Navier[3] had proposed it a century earlierNf=0, it is the same v(r,b)= _;a_v(r,b) (4)
as the no-slip condition and iN is infinite, it is a stress-free 9z
condition.

. . . _where u=N/R is a nondimensional parameter representing the
Although the Navier condition seems to be a simple eXtens'?r'?]portance of slip. Since Eq3) is even, the boundary condition

of the' classiqal no-slip condition, due to its inherent difficultyatz: —b is automatically satisfied. Equatidd) yields the eigen-
analytic solutions are rare. The only known fundamental 903 ue relation

etries which yield analytic partial-slip flow solutions are the

Stokes flow past a sphetg4]), parallel flows in a circular tube, cosa,=\a, Sina,. (5)
parallel plates, annular, and rectangular dy[g$). The literature _ . . .

to date considered either these geometries or perturbationsH§fe an=bp, andA=u/b. Equation(5) is solved in the Appen-
these geometries. The present paper studies a new fundamefitafor giveni. One can show that the eigenfunctions gl are
geometry which describes slip flow in a curved rectangular du@omplete and orthogonal if0,b]. In order to take into account
We shall obtain analytic solutions for low Reynolds numberle nonhomogeneous term in H@), we can make an even ex-
which is true for most aforementioned applications. Since tHgnsion of unity iNf0b], and construct the even Fourier series
Reynolds number is very small, nonlinear terms such as inertial or

centrifugal forces are absent. 1= 21 A, cod B,2) (6)
=

Contributed by the Applied Mechanics Division oHE AMERICAN SocieTy o~ Where the Fourier coefficients, can be inverted by multiplying
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- COS(BmZ) and integrating from O tdp,
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 16,
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be accepted until four months after final publication of the paper itself in the ASME .
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Fig. 1 Cross section of the curved rectangular duct

” 1 ’ 2 1 An
fn(r)+an_ Bn+r_2)f:_T' (8)
The solution is
An
fo(r)= —2- +C1nKa(Bnr) + Conl 1(Bnr) 9

Bar

whereK and| are modified Bessel functions. The consta@ig
andC,,, are determined from the slip conditions

fo=u(f;,—f,/r) onr=1-a (10)

fo=—u(f —f,/r) onr=1+a (11)

where ' —f/r) is the appropriate form for the shear stress on a
radial surface. With the aid of a computer with symbolic capabili-

ties we find

Cin=2A, (12)

1 2_+—2(a2—1)|_1 L
a BT 17 a)i, 3

e o 2Aba (13)
2 (1-a?)BiLs

where
m

S

Ll—2(a2—l)[ Il—B%M(Ion)}
x{(1+a)(a—1-2u)[2(1+a—p)K;
—(1+a)Byu(Kg +K3)]+(a—1)(1+a—2pu)
X[2(a—1-w)K; +(a—1)Bu(Ky +K;)]}

Lo=[2(1-a+m)l; +(a—1)Bua(lg +17)][2(1+a— m)K]

(14)

—(1+a)Buu(Kg +K3)]
+[2(1+a— )l +(1+a)Baully +12)]
X[2(a=1-u)Ky +(a=1)Bau(Ko +K3)] (15)

L3=<a—1)ﬂﬁ[2<a—1—ﬁ>K;+<a—1)ﬂnﬁ<Ka+K;>1( )
16

Ly=(1+a)(a—1-2m)[2(1+a~ u)K] —(1+a)Bau(Kg
+K3)]+(a-1)(1+a-2u)[(2(a—1-w)K;
+(a=1)Bau(Kg +K3)]

Ls=[2(1—a+u)l; +(a—1)Baully +15)][2(1+a—m)K]

7

—(1+a)Bau(K§ +K3) ]+ [2(1+a—u)l]
+(1+a)B.u(1§+13)1[2(a-1- w)K]
+(

a—1)Bnu(Ko +K;3)] (18)
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Fig. 2 Equivelocity lines for the —a=b=0.5 duct. (a) n=0, (b)
pn=0.5, (¢) p=1, (d) u=5. Only the top halves are shown. Val-
ues are for v(r,z).

and the plus and minus superscripts represent evaluatiGp( &t
+a) and B,(1—a), respectively. We find the series converge
very fast. Four-digit accuracy in velocity is guaranteed when the
first five terms in the series are retained.

Typical equivelocity lines(only the top half is shownare
shown in Fig. 2 for the square duca€b=0.25). In Fig. Za),
there is no slip on the boundary & 0). Notice the location of the
maximum velocity is slightly to the left of the center of the cross
section. When there is slip, the velocity on the boundary is no
longer zero, but local minima occur at the corngtig. 2(b)). The
maximum velocity also moves toward the outside boundgigy.
2(c)). For high slip coefficients the equivelocity lines tend to be
parallel to the side wallgFig 2(d)).

After the velocity is obtained, the flow rate, represented by the
mean velocity, is given by
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Fig. 3 Velocity distribution for azimuthal flow through an annulus

. 1 1+a (b 1 ) )
:ﬁfka fovdZdr v—g{(l—a) In(1—a)—(1+a)“In(1+a)+2(1+4C))a
> l1+a
Lo (A (1 racom 10| 5
2abi=1 | Bn l-a a
sina, Results and Discussion

_Cln(K(;r_KO)"_CZn(I(;r_IO)} (19)

,Bﬁ ' The flow conductance is best represented by the normalized
mean velocity instead of the friction factor—Reynolds number
Flow Through a Curved Channel product which c_ioes not exist for Stokes flow. Figu_l(a)4shows
. the mean velocity for a squaré€a) curved duct. Since lengths
We have solved the slow slip flow through a curved rectangulgfe normalized with respect to radius of curvatBréhe larger the
duct. The solutions, however, do not apply to the case where igue of a the larger the normalized curvature of the turn. In
heightb is infinite, i.e., the curved channel. This special case ffeneral the mean velocity rises withand with the slip factog,
considered here. The results are also exact solutions of the Navigfeept for large curvature and large constant slip factors, probably
Stokes since the Reynolds numbers need not be small. Becaysg to the uneveness of the wall she@ihe wall shear, being

the velocity is independent af the governing equation is proportional to the slip velocity, can be obtained from the wall
1 v 1 ve.Iocitie.s. in Fig. 2b—d).) Even if thg mean yelocity decreases
V(N + v = == (20) slightly itis more than off set by the increase in area such that the
r r r total flow still increases witla. The classical solution for the flow

. . . L in a straight rectangular duct with no slip.€0) is
Using the slip boundary conditions the solution is 9 9 E0)

vo=c;a’ (26)
1 C,
v(r)=—5rinr+Cyr+-= (21)  wherec,=0.14058 for the square dutgee, e.g.[6]). This solu-
tion compare very well with our curved duct solution, showing the
where curvature effects are minimal when there is no slip. Also shown in
o o . Fig. 4(a) are the results of Ebert and Sparrf®} who considered
Ci=%[2m(1—a+4an)—(1-a)*(1+a—2u)In(1—-a) the straight rectangular duct with slip. Their semi-empirical for-
F(1+a)¥(1-at2min(l+a)l/(a—at+a+3azy) i ourvariables s
_ Cop\—
(22) v= ( 1+ 22_b) vy @7)
1 AVAR IS 2 1+a . .. . .
Co=—g(l-a)7|2u+(1-a’)in where ¢, is a coefficient depending on the aspect ratio. For a
square,c,=7.567. We see from Fig.(d) that Eqg.(27) is valid
(a—a3+m+3a%n). (23) only for very smalla values, showing curvature effects are impor-

tant if slip is not close to zero. Figurgh) shows the results for
Some velocity profiles fom=0.25 are shown in Fig. 3. We note aspect r_atio of 0.5c1=0_.05717,02=6.306. In the no slip case
that for large slip or large:, the coefficientC; dominates and the the straight duct has slightly smaller flow than the curved duct.

velocity is approximately linear as reflected in Fig. 3. The results for aspect ratio of 2 are shown in Figc)4(c;
=0.2287,c,=12.612. In order to compare the flow for the same
a _ cross section, the value afis doubled compared to that of Fig.
v m/” (24) 4(b). We note that if slip is not zero, the flow in a duct curving
about the long sidéinset of Fig. 4c)) is always larger than that
The mean velocity is curving about the short sidénset of Fig. 4b)). Figure 5 shows
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the large aspect ratio cases. The infinite aspect ratio redlote  boundary conditions, can be shown to be proportional to the ra-
in an annulusare given by Eq(25). Figure 6 shows the approachdiusr, i.e., a rigid rotation. This is also reflected in EG4) for

of the finite aspect ratio solution E@L9) to the infinite aspect large w.

ratio solution for increasing. It is seen that the effect of slipisto  Of interest is the location of the velocity maximum which we
delay this approach to higher aspect ratios. Although the curvested(Fig. 2(a)) is off centered towards the inner wall. In order to
are fora=0.5 the results for other values af show a similar show that this phenomenon is a property of neither Stokes flow
behavior. In the case of large slimfinite N or ») the boundaries nor slip flow, consider the infinite aspect ratio solution which is
are stress free. From force balance the fluid can flow withoutadso an exact solution of the Navier-Stokes equatiwatd for all
pressure gradient. The azimuthal velocity, satisfying all thReynolds numbejsUsing Eq.(21) and no slip #+=0), we find

06

<

04}

f— 22—

06+

<

Q2+

0] 02 04 a 06 o8 1
(b)
Fig. 4 Normalized mean velocity as a function of a for various constant slip

factor u. Unless otherwise noted, dashed lines are from [5] or Eq. (27). (@) b
=a, (b) b=0.5a, (c) b=2a.
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Fig. 5 Normalized mean velocity for high aspect-ratio ducts. Continuous lines
are when b=5a. Dashed lines are from Eq. (25) b=c».

the velocity maximum is always closer to the inner wall, espeénaner wall is due to the fact that small curvature and large Dean
cially when the normalized curvature is large=2/e=0.7358 numbers were assumed, the latter is known to promote a maxi-
<1 for a=1). When slip is increased, the velocity maximunmum velocity towards the outer wall1]).

moves towards the outer walFigs. 2b), 2(c), 2(d), and 3. In Analytical slip flow solutions are even more scarcer than no-

general, the flow in a curved duct is governed by both the curvship solutions due to the inseparability of the Robbins type bound-
ture and the Reynolds numbg@r Dean number The reason cur- ary conditions in most coordinate systems. We find slip flow on a
rent literature failed to report a velocity maximum closer to theurved tube dramatically changes the velocity distribution, from
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Fig. 6 The mean velocity as a function of height b for a=0.5 and given slip
factor u. Dashed lines are the b= results from Eq. (25).

Table 1 Values of e, for various A\

A 0.2 0.5 1 2

(n) Num. Eq.(28) Num. Eq.(28) Num. Eq.(28 Num. Eq.(28

1 1.3138 1.0769 0.8603 0.6533

2 4.0336 2.5830 3.6436 3.5632 3.4256 3.4277 3.2923 3.2913
3 6.9096 6.8102 6.5783 6.5746 6.4373 6.4383 6.3616 6.3616
4 9.8928 9.8757 9.6296 9.6290 9.5293 9.5297

5 12.935 12.931 12.722 12.723 12.645 12.645

6 16.011 16.010

concentric equivelocity lines to parallel equivelocity lines. Botlif A=0 the exact solution isy,=(n—0.5)7. Equation(28) is

slip and curvature enhances the flow rate, although nonlinearlycompared with the exact numerical values in Table 1.
Depending on the application, other factors such as twist, non-We see that Eq28) is quite accurate especially for largeand

zero Reynolds numbers, non-Newtonian effects, compressibilitgyge \. In fact for \=1 the asymptotic formula gives five-digit

etc., may be included. The present paper then serves as a basiageuracy for alh=2.

these more involved situations.
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Some Properties ofJ_|ntegra| in Plane ity are analyzed. An infinite plate with any number of inclusions,

cracks, and any loading conditions is considefEd). 1). A de-

EIaSt|C|ty rivative field is defined and introduced. Using the Betti's recipro-
cal theorem for the physical and the derivative fields we introduce
Y. Z. Chen two path-independent integral®; andD,. It is proved that the

D (k=1,2) values are equal to tlie(k=1,2) values on the large

Division of Engineering Mechanics, Jiangsu University, o Using the complex variable method, thék=1,2) values

Zhenjiang, Jiangsu 212013, P. R. China on the large circle are obtainable. It is found that fheand J,
becomes a vector, and it may be expressed in a gradient of a scalar
K. Y. Lee function P(x,y).

Department of Mechanical Engineering, Yonsei
University, Seoul 120-749, South Korea
2 Jy Integrals and the Derivative Stress Field

In the literature, thel, (k= 1,2) integrals are defined by
Some properties of the J-integral in plane elasticity are analyzed.
An infinite plate with any number of inclusions, cracks, and any I(L)= f(x’y) ( o ﬁo--n-)ds (1)
loading conditions is considered. In addition to the physical field, 1 ( Togx T
a derivative field is defined and introduced. Using the Betti’s re-
ciprocal theorem for the physical and derivative fields, two new (x.y)
path-independent Pand D, are obtained. It is found that the Jz('-):f (
values of J(k=1,2) on a large circle are equal to the values of ¢
D\(k=1,2) on the same circle. Using this property and the conwhereW denotes the strain energy density,the displacements,
plex variable function method, the values @fk}=1,2) on a large aj; the displacements, amy the direction cosines. In plane elas-
circle is obtained. It is proved that the vectog(d=1,2) is a ticity, the strain energy density can be expressed as
gradient of a scalar function P(x,y]DOI: 10.1115/1.1432663

Xo:¥o):(L)

Ju;
an_ _()'ijnj

oy ds )

Xg:Yo):(L)

W:Ui'jUijlz (3)
whereu; ;=du;/dx; . In Egs.(1) and(2), the path ‘L" is gener-
1 Introduction ally defined as a path with the starting point, (y,) and the end

é)oint (x,y) (Fig. D.

The well-known J-integral of elastic fracture mechanics wa Meantime, the relevant integrals are defined on a closed path

introduced by several researchéts-3]. The integral was related ,

to potential energy-release rate associated with crack extensio%l.-'” (Fig. 1)

Budiansky and Ricg4] showed that some path independent inte- au,

grals discovered by Knowles and Sternb&bg were related to J1(CH)= 3§ Wn, — Waijnj)ds (4)
(CH)

energy-release rates associated with cavity or crack rotation and

expansion. In some particular cases, fhimtegral can be inte-

grated in a closed fornj3]. The relations between the path- Jo(CH)= fﬁ

independent integrals and the stress intensity factors were ana- (

lyzed [6—9]. Chen and Hasebfel0] investigated the consistencyn Egs.(4) and(5), if there are some holes, cracks, or inclusions in

check of theJ-integral in the multiple crack problems. Recentlya closed contour, the contour is defined as the type “CFg. 1).

the vanishing condition of thd, value on a large circle was In the following analysis, two stress fields are introduced. The

addressed without a rigorous prddft]. first field is the physical field, which is defined from the geometry
In this paper, some properties of theéntegral in plane elastic- and the loading condition shown in Fig. 1, and it is called the

a-field hereafter. Clearly, for the-field we can write

(W _o d (5)
n oiin; |ds.
CH) 2 oy M

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Ui(e)=Uis  Tij(a)= Oij - (6)
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Fig. 1 An infinite plate containing cracks, holes, and inclusions

(9Ui (70'”
Uig)= 25 Tiile~ g - ™

It is easy to prove that the componenigs andoj;g satisfy all
the governing equations of elasticity.
Similar to Eq.(1), we can define

(X,y) 1
Dy(L)= 2(ul(a)o-l](ﬁ) Ui(p)Tij(a))N;dS
(XoYo)s(L)
J - 1( o ) d ®)
= = ui___(rij n]- S.
(xo,y(,),(L)Z ax X

Clearly, from the Betti's reciprocal theorem in elasticidy(L) is
also a path-independent integral. In addition, similar to &g,
the following integral is defined:

D,(CH)= 1( doiy_ d 9
1(CH)= o 2 Ui — = 2 %ii | njds. ©)

A relation between); andD, has been found, and it reads

J;(CH)=D;(CH). (10)

In fact, instead of Eq(10), it is equivalent to prove the following

equality:

Wdy.
(CH)

9oij I ds=2 11
o UiDx ™ ox 7| NidsT 11

Clearly, for the first term on the left-hand side of EGl), we
have

196 / Vol. 69, MARCH 2002

Uy ——
ﬁc»—n b ox
Jdo. (90 Jdo Jdo \
fﬁ ( “d Xydx)+ é v( Xydyf—ydx
do do
§ ol - Tk
(CcH) X
Jdo Jdo
+ j@ v( Y d ——ydx)
(CH) ay oX
é (—udoy,—vdoy)
(CH)

(cH

In addition, for the second term on the left-hand side of @4),
we have

AP
ax X oy @Y

(12)

+O'y( dx+ —ydy)

d % o d
2= el O n S
cHy X

Ju Jv
= % — (o, dy— a'xydx)-i- (O’Xydy— o,dx). (13)
cH) IX
Finally, from Egs.(3), (12), and(13), the equality shown by Eq.
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(11) is proved. Thus, the equality EqL0) is also proved. The > a
identity shown by Eq(10) is implicit in Eshelby’s work{12]. d(2)=A,z+A, log z+2 _"; (26a)
Alternatively, the second stress field, tigefield and may be k=172
defined as -
by
au o0 ¥(2)=Byz+B,logz+ Y, ¢ (260)
Y=gy TieT 5y (14) k=1
where

It is easy to prove that the componenig; andojjg satisfy all

the governing equations of elasticity. Similar to the previous case, oy toy o oy
we can define Ai=—7— Bi=—5—+Fioy (27a)
Gy 1 (Fy+iFy) —  k(Fy—iF,)
D (L)=f = (Ui Tii (8)— Ui(8)Tii (o)) Ni0S —_ - x ¥ =_ ——~ X ¥
2 CraylL) 2 i) Tij(p) ~ Hi(p) Tij ()M A, PRt 1)’ B, KA, Pm(rtl) (270)
(xy) 1( doy oy In Eq. (27h), F, and F, are the resultant forces applied on the
= 3 uiW_ Gy i n;ds. (15) finite region of the infinite plate. Also, the coefficieat and by
(X0:Yo).(L) (k=1,2,...) in Eq.(26) will be determined from a concrete
do O solution.
D,(CH)= é _( Uj —— —'aij)njds. (16) For the a-field, we simply write the complex potentials in the
cm 2\ ay ady form
whereD,(L) is also a path independent integral. Similarly, we b (D=b(2), P (2)=(2). (28)
can prove
P If the B-field is defined by Eq(7), we obtain the following:
J2(CH)=D,(CH) 17)

a
+ =—(oxtoy)=4Rep"(2),
3 J, Integrals on a Large Circle (@t 7y)ip = (oxt o) = 4Rep(2)

In the following analysis “CR” denotes a sufficient large circle ) 9 _
in which all the cracks and inclusions are enclogéig. 1). Since (oy= ot 2io0) (g =7 (oy=oxF2i0%y)
the equality Eq.(10) is proved, and the closed path “CR” is a
particular type of “CH”", thus, we have =2[z¢"(2)+ " (2)+ ¢ (2)] (29)
J1(CR)=D4(CR) (18) 26U+ v} = 26 d (utiv)
u+i =2G—(u+i
where Yo X Y
au; =k¢'(2)=2¢"(2) = ¢ (2)—¢'(2).  (30)
(CH) IX Comparing Egs(21) and(23) with Egs.(29) and (30), the com-
plex potentials for thes-field are obtained,
D4(CR) 35 1( il W ) d (20) -
1 = = ui___a-ij nj S. A2 kak
or 21 XX (D=9 (A=At =2 (312)

Equation (18) shows that instead of evaluating the integral

J;(CR) we can evaluate its equivalent valDg(CR). A, 4B, < k(ag+by)
The following analysis depends on the complex variable func-#5(2)=¢'(2)+¥'(z)=A;+ B+ *E KT

tion method in plane elasticityl3]. In the method, the stresses

(0x,0y,0%), the resultant forcesX,Y) and the displacements (31b)

(u,v) are expressed in terms of two complex potentig{g) and Obviously, it is natural to rewrite th®,(CR) integral in the

(2) such that form

k=1 Z

O'X+U'y:4Raﬁ,(Z) 1 (70'” au;
- Dl(CR): % E UiW_W(T” njds
oy— oyt 2oy =2[2¢"(2)+ ¢ (2)] (21) (CR
f==Y+iX=¢(2)+2¢'(2)+ ¢(2) (22) =Re§ %((urfiu,,)(a)((rrﬂam)(m
- (CR)
2G(u+iv)= 2)—z¢'(2)—Y(z 23
)=tz mzd iz m ) # — (U= it,) (007 ) ) (32)

whereG is the shear modulus of elasticity=(3—v)/(1+v) is . . .
for the plane stress problemx=3—4v is for the plane-strain WNere the termsu, —iug) ), (o,+iayg)(g), (Ui—iug) g and

problem, and is the Poisson’s ratio. The following equations if?r +1076) () €an be evaluated by using Eq24) and (29). )
the polar coordinate are also introduddd]: It is easy to see that there are some relations on the large circle

o
R2
oo =¢' D+ (2= Z[28" DTV D] @) _poie) iRz dzeizds, ds—Rdo— —i 02

z — _
26(u,~iuy)= zlx¢(2)-24' (2~ w(2)]. (25  (forz onCR). 33)

The substitutions shown by E¢33) reveals that the integral in-

For the physical field, the complex potential§z) and ¢(z) in volved in right side of Eq(32) (after “Re”) may be changed into
the remote place can be expressed in the general fo8in an integral of complex variable function of the fodyg f(z)dz.
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By using the residue theorem in complex variable analysis for thelt can also be proved that tH2,(L) andD,(L) integrals de-
integral$ g f(z)dz from Eq.(32) the final result is obtainable: fined by Eqgs(8) and(15) also become vectors.

J1(CR)=D,(CR)
5 Conclusion

The introduction of the derivative field plays an important role
in the present study. It is worthy to explain why this field is

1
= %[(K— 1) (o +0y)Fy—=2(ay — o) Fyt+ 4oy F].

34) introduced. In fact, the second term in theintegral is composed
From Eq.(34) we can see the following points: of two factors gu;/dx and ojn;ds. Physically, the terms
(@ The J;(CR)(=D;(CR)) value is not equal to zero in (Ju;/dx)(oj;n;ds) represent the work along a segmelstwhich
general. is done by the traction of the physical field and the displacement

(b) The J;(CR)(=D4(CR)) value solely depends on the re-of the derivative field. This situation helps people to get an idea to
mote stressesr, , 0';, and o, and the resultant forceB, and Uuse the Betti's reciprocal theorem between the physical field and
. It does not depend on the coefficiemisandb,(k=1,2,...). the derivative field. Therefore, a path-independent intergL )

Prewously, the vanishing condition 8f(CR) was studied without is obtainable.

a rigorous proof11]. In addition, after equalityJ;(CH)=D,(CH), or J,(CR)
Similarly, if the p-field is defined by Eq(14), the relevant =D;(CR) is proved, and the realizatiar=R?/z on the large

complex potentials take the form circle is used, the final result df,(CR) is obtained .

A, < kay

b (2)=ig' (2)=i| A+ 7 AT (3%8)  References
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or J, generally takes a multiply value. Clearly, if one takes a cut
from all cracks or inclusions, al(,J,) field with single value is
obtained. From the definition shown by Eq@$) and(2), we find

the following: ’ Orthotropic Hyperelasticity in Terms
23, o3, 1(% w o o o of an Arbitrary Molecular
Ty ax 2l Tt T x> x %)+ B9 Chain Model
Therefore, we can define a function
xy) J. E. Bischoff
P(x y)—f( )JldXJrszy- (40) Mem. ASME
X0:Yo
Alternatively speaking, thd,; andJ, integrals become the gradi- E. M. Arruda
ent of a scalar function Mem. ASME
il il K. Grosh
Ji=—, J=—. 41) ™
Y @D Mem. ASME
_Thes_e relations rev_eal thdy and J, become vectors, and an
invariant can be defined: Department of Mechanical Engineering and Applied
Mechanics, University of Michigan, Ann Arbor,
Jin=\1+33. (42) Ml 48109-2125
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There are many statistical mechanical models of long-chain mofbrmulation, an orthotropic continuum constitutive law based on
els, two of which are the freely jointed chain model and the wornthe WLC model will be developed and compared to the previously
like chain model. A continuum constitutive law for hyperelastideveloped model based on the FIC model.

orthotropic materials has recently been developed using the freely

jointed chain model as its basis. In this note, the continuum strain - Constitutive Model Development

energy function is recast in general terms allowing for the incor- . . . .
poration of an arbitrary macromolecular constitutive model. In Let W(p) be the strain energy fu_nctlon of a single chain v_vhere
particular, the orthotropic constitutive model is recast using th& IS the length of the chain normalized by a length scale originat-
wormlike chain model in place of the freely jointed chain modéf9 from the statls.tlcal model. Fol!owmg the approachiln B'.SChOﬁ
and the effects of this alternation are examined. et al. [1], the strain energy function for an orthotropic unit cell

[DOI: 10.1115/1.1432664 with eight of these chains is
n([< 1 (dw(p)
w= 1S wip®) |- Z[ =22 I
. 4 i=1 P dp p=P
1 Introduction
+B[cosHJ—1)—1]. 3

A micromechanical model for orthotropic hyperelastic materials ) _
has recently been developed from an orthotropic unit cell withhe components;, of the second Piola-Kirchhoff stress tensor
eight constituent chaing]. This model can be applied to collag-calculated fromW are

enous soft tissue such as skin and hear tissue, in which the pres- 4 Sip) 5

ence of an anisotropic collagen network within the tissue domis _ " Pi Pk (dW(P) B l(dW(P) ara;ay

nates the elastic response of the material and results in nonlinédr 4 || <~ p® dp _ @l P\ dp b )\g

orthotropic constitutive behavior. In this model, the response of a Per -

single chain in the representative unit cell is calculated by consid- bzbjbk CZCjCk _ 9

ering the chain to be freely jointed; that is, each chain is com-  +—2—+—7—|(+B sinh(J—1) —=— (4)

posed of a numbeN of rigid links each of lengtH. The strain b ¢ ik

energyw(p) for such a chain is given by whereP{" are components of the undeformed chain vector for the

p B ith chain andg;, are components of the Lagragian strain tensor.

w(p)=k®N(Nﬁ+InW) (1) When the freely jointed chain model is used, together with the

assumption that the undeforméeference length of each chain
where p is the length of the chain normalized by the rigid linkis its rms length such thatP=|N, then dw(p)/dp
lengthl; k is Boltzmann'’s constan€) is absolute temperature; and=k® £ 1(p/N) and the stress-strain relationship given[ij is
B=L"Yp/N) whereL(x)=cothx—1/x is the Langevin function. recovered.

The continuum strain energy functiohl developed from consid- ~ The WLC model considers a macromolecule to be a flexible rod
ering an orthotropic unit cell with eight such chains forming gharacterized by a total contour lendttand a persistence length
junction at the center of the unit cell and terminating at its cornefs (the characteristic distance over which significant deviations in
is given by the tangent vector of the chain arisan interpolation formula for

0 50 the force-stretch response of a wormlike chain is

—B(i)-l- |I’I—(|) fA r 1 1

N sinhs ko L a1-rin)? 3 ®)

1 wheref is the applied force and is the deformed length of the
+Bleosi=1)~1] ) chain[2]. Using the persistence length as a normalized factor, the
strain energy for a wormlike chain can be found by integrating Eq.

- %mugzxgzxgz)

whereW, is a constant related to the strain energy of the und

formed continuumn is a free parameter that reflects the unit cel ) giving
(or chain density; the superscript X represents thé&h chain in p? A 1 P\
the unit cell; 8,= £~ *(P/N) whereP is the initial normalized Wip)=kO\ S+ 7 1A a) P=A (6)

length of a chainjh,,\,, and\; are stretches anal, b, andc are . ) ) )
the normalized unit cell dimensions along the three orthonormdherep=r/A and A=L/A. (Note that a singularity exists in Eq.
material axes, b, andc, respectivelyB is a free parameter that (6) at the fully extended length=A, beyond which p>A) a
governs the bulk compressibility of the material; ahddetF is finite value ofw(p) is returned from the strain energy functlon_
the volume change accompanying deformation normalized by tR¥en though these deformed lengths are not physically permis-
undeformed volume wherE is the deformation gradient. Only sible) The undeformed length of a chain is typically given as its
four chains act independently because of symmetry. end-to-end root-mean-squared distarfiRe (2AL [2], and thus
Statistical representations of macromolecules other than thg normalized undeformed length used herdis (2ZA. From
freely jointed chain(FJO model can be considered within thethis relation, whenA<2 then P=A, meaning the undeformed
framework of a unit cell to develop a continuum constitutive law€ngth of each chain is greater thanb its contour length. Clearly
such as a freely jointed chain model with steric constraints, th@at is not physical and must therefore be greater than two when
wormlike chain(WLC) model, or the extensible wormlike chainuSing this model. Using the undeformed lengtndw(p) in Eq.
model. Each of these models prescribes a unique strain ene the strain energy function and the associated stressed for the
function for the chain and will result in a unique continuum straiTthotropic continuum model using the WLC approximation can
energy function. To incorporate other chain models, the orthotrBe determined from Eq¢3) and (4).
pic constitutive model given in Eq2) will be recast in terms of
an arbitrary chain strain energy functiar(p). Using this general 3 Simulations

- To examine the differences associated with using the WLC
Contributed by the Applied Mechanics Division ofiE A © model in place of the FJC model within the framework of the
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF . . . . L A

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- orthotropic continuum model, simulations of uniaxial tension have

CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 8P€€N performed. For simplicity, the material axes are aligned with
2001; final revision, Oct. 5, 2001. Associate Editor: L. T. Wheeler. the principal stretches, such that[1,0,0], b=[0,1,0], andc
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=[0,0,1]. By virtue of this alignment no shear stresses are gen- 4
erated and the stress-stretch relations in the three principal direc-
tions in terms of the chain strain energyp) are 357 10 ® °
27y 2 1 3t & i o
na“| ANy dw(p) 1 /dw(p) ) 3 v
Tiy=—=|— = +B -1 2 ;9
a3l p dp P\ dp _ sinh(J=1) w250 £ +‘+®
L p=P % & ,g@@
nb?[A3dw(p) 1 (dw(p)) v 2r 0%
To0=——| — — +Bsinh(J—1) @ Stretch
274 p dp Pl dp | | &15}
nc2[A3dw(p) 1/dw(p)| | 1t
Tag=—a | — — —( ) +Bsinh(J—-1) (7)
43| p dp P\ dp b 05 »
whereT;; are the principal Cauchy stressas,are the principal ok
stretches, and the deformed chain length i 1 1.2

a?\f+bA\5+c?\3/2. To simulate uniaxial tension along the

Xj-axis, To,;=T33=0 and the second two equations in EG.can g 5  simulations of uniaxial tension along the  x-axis using
be solved for the transverse stretchgsand\ 3 given an applied  the freely jointed chain  (FIC) model (represented by lines ) or
stretch\ ;. Note thata andb are free parameters, but after specithe wormlike chain  (WLC) model (symbols ) in the orthotropic

fying these parameters and the chain paramétessidN for the constitutive model. The locking stretch was set to be Al=1.5,

FJC modelh and A for the WLC mode), thenc is fixed by 1.7, or 1.9. Parameters are given in Table 1.

c=\4N-a?—b? ®)
if the FJC model is used or by formed in which the Iocking_stretcklL was set a priori to be 1.9,

o= VBA-a"-D? () Raatis are shown Ih Fig. 2: parameters used in these Smuiations
if the WLC model is used. are given in Table 1. For uniaxial deformation along the

Figure 1 shows results of simulations using the FJC or WLQl_axisvthe WLC model predicts locking to occur et= 2A/a,
model for uniaxial tension along each of the three material axg§,s settingA as a function ofA- and a. However, whenA“
(denotedx;, X, X3 in the figurg. For the FJC simulations, —1 5 and whera=2.5 this relations giveA <2 in violation of the
a=4, b=3, c=2, N=7.25, andn=1-10°m® WLC simulation physical basis of the WLC model. Thus, for this locking stretch,
parameters were selected to match the results from the coWiggs calculated with\=2.125. The FJC model predicts locking
sponding FJC simulation while preserving the relative values ghder uniaxial tension along the-axis to occur atA“=2N/a.
the aspect ratios; the resulting parameters @ared, b=6.75, The parameters for the curves using the FIC model were deter-
c=4.5, A=18.35, anch=0.7- 10°4m°. For all simulations8=0. mined by matching the initial modulus and locking stretch of the
MPa. Though not shown here, at low stretched.5) or stretches  corresponding WLC simulation. As seen in Fig. 2, the initial be-
well into the locking regime(corresponding to stresses above havior (insey and the locking stretch of the two models are
kPa, differences between simulations using the FJC model versggitched well, but the curvatures of the constitutive responses in
as the WLC model become significant, indicating that the initiahe intermediate regime deviate significantly from each other.
modulus and final locking stretch predicting by the two models Figures 1 and 2 suggest that differences in the response of the
are different. continuum constitutive model when different molecular models

To examine the ability of the continuum model using the WLGre usedin this case the FIC model versus the WLC mbdah
model to capture the initial modulus and locking stretch of simwpe attributed primarily to the differences between the molecular
lations using the FJC model, a series of simulations was pefiodels themselves. It is known that the locking behavior pre-
dicted by the FJC model for a single chain occurs more sharply
than that predicted by the WLC modé] and this is reflected in
the continuum responses examined héfigy. 2). However, the
orthotropy of the material response predicted by the general con-
tinuum model in Eq(3) relates directly to the orthotropic aspect
ratios of the unit cell itself and thus the orthotropy is not affected
by the selection of a particular chain constitutive modeg. 1).
Additionally, a change in the aspect ratio of the unit cell affects
the predicted continuum response in a consistent fashion regard-
less of the particular molecular modélig. 2), provided the physi-
cal bases for the molecular models are not violated. These results
suggest that the orthotropy of the continuum model using the FJC
model that has previously been seen to match the orthotropic re-

Table 1 Parameters used to generate the curves in Fig. 2. For
Stretch all simulations b=1 and B=0.1 MPa.

Fig. 1 Simulations of uniaxial tension along each of the three Wormlike Chain (WLC) Freely Jointed Chain (FJC)
material axes (x_l ,X,X3) using th(_e freely jointed (_:hain _(FJC) or L a A n(im3) a N n(im3)
the wormlike chain  (WLC) model in the orthotropic constitutive
model. Parameters used for the FIC simulations are a=4, b=3, 1.9 25 2375  4.10% 2.5 2.375 5.10%?
¢=2, N=7.25, n=1-10%¥m?3, and B=0.1 MPa. Parameters used 1.7 25 2125 410 25 2.125 3.108
for the WLC simulations are  a=9, b=6.75, c=4.5, A=18.35,n 15 2.83 2125 4.107 25 1.875 3.5.10%
=0.7X10%/m?3, and B=0.1 MPa.
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sponse of certain biological tissulgg will also be predicted using References
a different chain model such as the WLC since the orthotropy is ) gischofr, J. E., Arruda, E. M., and Grosh, K., 2001, “A Microstructurally
largely attributable to the unit cell rather than the constituent” " gased orthotropic Hyperelastic Constitute Law,” ASME J. Appl. Mech., to

chains; however, the nonlinear nature of the resulting(ifiés, the appear.
degree of lockingwill be altered due to differences between the [2] Marko, J. F., and Siggia, E. D., 1995, “Stretching DNA,” Macromolec28s
chain models. pp. 8759-8770.
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