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Surface Instability of an Elastic
Thin Film Interacting With a
Suspended Elastic Plate
This paper studies surface instability of a compliant elastic thin film on a rigid subst
interacting with a suspended elastic plate through van der Waals forces. The analy
based on a novel method which permits a simple rational expression for the intera
coefficient as a function of the wave number of instability mode. The critical value o
interaction coefficient and the instability mode of the film-plate system can be determ
easily by identifying the minimum of the interaction coefficient within an admiss
range. When the stability strength of the plate is lower than the film even for the sho
plate-lengths, the interaction coefficient is found to be an increasing function of the
number, and thus the film-plate system exhibits a long-wave instability mode determ
by the suspended plate. In all other cases, the interaction coefficient admits an int
local minimum representing the short-wave mode of the film, and the critical value
instability mode of the film-plate system are determined by the internal local minimum
shorter plates, or by the long-wave mode of the plate for longer plates. Some num
examples are given to illustrate the results.@DOI: 10.1115/1.1445146#
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1 Introduction
Surface morphological instability of a thin liquid layer in var

ous configurations, due to van der Waals forces or electros
interaction, has been the topic of extensive research~@1–3#!. Very
recently, similar issue has been raised for solid thin films.
example, Ghatak et al.@4#, Monch and Herminghaus@5#, and
Shenoy and Sharma@6# studied surface instability of a rubbe
elastic layer bonded on a rigid substrate and attracted by a
plane through van der Waals forces. It is found that the flat surf
of the compliant elastic layer becomes unstable when the inte
tion exceeds a critical value~it is the case when the gap widt
between the two surfaces is only a few tens of nanometers!. In
particular, the wavelength of the surface instability mode is p
portional to the thickness of the elastic layer, independently o
elastic modulus and the nature of the interaction. This new typ
surface instability, governed by a competition between the in
action energy and the elastic strain energy of the layer, is pu
elastic in nature and does not rely on the existence of a sur
compressive prestress. Therefore, it is essentially different f
the known surface instabilities due to surface compressive s
~@7,8#! or stress-assisted surface diffusion~@9,10#!. A throughout
study of this new type of surface instability is relevant for ma
physical phenomena and technical problems at microscopic o
nometer scale, such as solid adhesion~@11,12#!, wafer bonding
~@13,14#!, and electrically induced surface patterning~@15,16#!.

Here, two important open issues immediately come into qu
tion. First, in all of the existing work~@4–6#!, the interacting body
~such as a metallic plate, of shear modulus higher than 10 G!
has been treated as rigid body because it is much stiffer than
rubber elastic layer~of shear modulus less than 10 MPa!. How-
ever, as shown in@5,6# and also in the present paper~see Section
5!, the critical value for surface instability of an elastic film fixe
on a rigid substrate is determined by its surface complianceh/E,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision, October 5, 2001. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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whereh is the thickness of the elastic film, andE is its Young’s
modulus. Therefore, the strength of a metallic layer against
face instability would be comparable to or even lower than
rubber elastic film if the thickness of the former is a few orders
magnitude larger than the latter. In this case, the assumptio
rigid body is inadequate for the metallic layer, and the syst
should be treated as two interacting elastic bodies. In doing
because the individual instability modes of two elastic layers
different thicknesses are different, the incompatibility of the tw
instability modes could crucially affect the critical value and t
instability mode of the system. Hence, the deformability of t
interacting body is an issue of practical and theoretical sign
cance.

Second, in many important cases of two interacting elastic l
ers, one layer is often suspended so that it is traction-free on
of its surfaces and interacts with another elastic layer on a r
substrate through the other surface. In this case, the attra
forces are supported by some geometrical constraints at the e
which keep the two mutually attracting elastic layers apart,
Fig. 1. Obviously, the instability mode of a suspended elastic la
~modeled as an elastic plate! is substantially different from that o
an elastic layer bonded on a rigid substrate. In fact, the form
like the buckling mode of a Euler column, is proportional to t
length of the layer, whereas the latter scales with the thicknes
the layer, as mentioned before. Hence, the incompatibility
tween the long-wave mode of the former and the short-wave m
of the latter could have a crucial effect on surface instability of
film-plate system. This offers one of the justifications for the stu
of surface instability of a suspended elastic plate interacting w
an elastic film on a rigid substrate, as shown in Fig. 1.

The problem depicted by Fig. 1 may also be motivated fro
some other problems of current interest. For example, suspe
crossbar array of carbon nanotubes, above a thin dielectric l
deposited on a substrate, has been proposed recently as a pr
ing advance towards carbon nanotube-based electronics~@17,18#!.
In such a design, suspended nanotubes could deform due to
van der Waals interaction with other adjacent nanotubes and
dielectric layer~@19,20#!. Thus, in view of the fact that even sma
local deformation of carbon nanotubes could crucially affect th
electronic performance~@21,22#!, the deformation and surface in
stability of suspended carbon nanotubes~modeled as an elastic
strip or beam! due to the van der Waals interaction with an elas
layer on a substrate is of greater interest. Here, it is stressed
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this type of surface instability, which appears on the tensile sid
the bent member, is different than buckling-induced wrinkling
carbon nanotubes under bending due to a compressive s
~@23,24#!. To our best knowledge, this type of surface instabil
has not been addressed in the literature, in spite of extensiv
search on contact mechanics of two elastic bodies in the pres
of van der Waals-like forces~@25#! and the related tip-surfac
instability ~@26,27#!.

2 Description of the Model
Surface instability of an elastic film interacting with a rig

body is analyzed in@5,6# with the conventional method of plan
elasticity. It turns out that the analysis of surface instability of tw
interacting elastic layers would be quite formidable if such
method is adopted. Here, instead, a novel method based on
Kerr-model~@28#! of elastic foundations is suggested. As will b
seen below, this new method reduces the original plane-st
problem of two displacement components in two spatial dim
sions to one of single displacement component in one spatia
mension, and thus allows one to study surface instability of t
interacting elastic layers.

Since surface instability is characterized by the surface nor
deflection, and the van der Waals interaction only causes a su
normal stress, the analysis of surface instability could be sim
fied largely if a relation between the surface normal deflection
the surface normal stress could be found. Motivated by this id
we have examined the well-known Wrinkler model for elas
foundations and its various refined versions~@28–30#!. We found
that only the Kerr’s model~@28#! perfectly serves this purpose~for
instance, Bharatha and Levinson’s model~@30#! cannot achieve
this goal!. To demonstrate this, let us first consider the low
elastic film fixed on a rigid substrate, shown in Fig. 1. As sho
in the Appendix, the~upward! surface deflectionV1(x) of the
elastic film on a rigid substrate can be related to the normal st
s(x) on its surface by a differential relation

@12ah1
2D21bh1

4D42eh1
6D61gh1

8D8#V1

5@c2dh1
2D21 f h1

4D42kh1
6D6#

h1

E1
s, (1)

whereD denotes the differential operatord/dx, h1 andE1 are the
thickness of the elastic film and its Young’s modulus, anda, b, c,
d, e, f, g, andk are some dimensionless constants depending
the Poisson’s ration1 of the elastic film, given by

a5
1

12n1
, b5

~324n1!

12~12n1!2 , c5
~122n1!~11n1!

~12n1!
,

d5
~324n1!~11n1!

3~12n1!
,

Fig. 1 Surface instability of an elastic thin film interacting with
a suspended elastic plate
98 Õ Vol. 69, MARCH 2002
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e5
~324n1!

90~12n1!2 , f 5
~324n1!~11n1!

15~12n1!
,

g5
~324n1!

1260~12n1
2!

, k5
2~~11n1!~324n1!

315~12n1!
. (2)

In particular, the coefficientc vanishes when the elastic film i
incompressible (n51/2), reflecting the fact that a uniform surfac
pressure will not cause any normal deflection of an incompre
ible elastic layer perfectly bonded on a rigid substrate.

Similarly, for a suspended elastic plate~its upper surface is
traction-free!, as shown in Fig. 1, the~downward! vertical deflec-
tion V2(x) of its lower surface can be related to the normal str
s(x) exerted on the lower surface, by a differential relation~see
the Appendix for the detailed derivation!

@12ph2
2D21qh2

4D42th2
6D6#

h2

E2
s5@rh2

4D42sh2
6D61uh2

8D8#V2 (3)

whereh2 andE2 are the thickness of the suspended elastic p
and its Young’s modulus, andp, q, r, s, t, andu are some dimen-
sionless constants depending on the Poisson’s ration2 of the sus-
pended elastic plate, given by

p5
1

3
, q5

1

15
, t5

2

315
, r 5

1

12~12n2
2!

,

s5
1

90~12n2
2!

, u5
1

1260~12n2
2!

. (4)

Here,s appearing in~1! and ~3! is the same, because the norm
stress on the lower surface of the suspended plate is equal t
normal stress on the surface of the elastic film fixed on a ri
substrate. It is noted that Eq.~3! becomes

h2

E2
s5rh2

4D4V2 (5)

if all higher-order terms are neglected. Evidently, the result~5! is
exactly the classic elastic plate equation under a transverse
sure. Hence, Eq.~3! is a high-order modified form of Eq.~5! for a
suspended elastic plate under the surface normal stress.

When two elastic layers are brought into contact, van der Wa
forces come into play if the gap width between the two surface
very small ~say, well below 100 nm~@5#!!. The van der Waals
interaction between the two surfaces produces a surface no
stresss~d! whose value at a pointx is a function of the distance
d(x) between the two surfaces at that point. For instance, a sim
general expression for the van der Waals interactions~d! between
two flat surfaces can be found in@5#. Thus, if the deflections of the
layers, prior to and after surface instability, aret1 , t2 andw1 , w2 ,
respectively, that is

V15t11w1 , V25t21w2 , (6)

thus the surface normal stresss can be expanded as

s~d!5s01A~d2d0!,

s05s~d0!, A5
]s

]dU
d5d0

,0,

d05D2~ t11t2!, d2d052~w11w2! (7)

whereD is the undeformed initial gap between the two surfac
d0 is the gap prior to surface instability, ands0 is the normal
stress prior to surface instability. Here, it is essential that the
der Waals forces are attractive andA,0 ~@5#!, and the interaction
acts like a linear spring of a negative spring constant. Hence,
surfaces of two interacting elastic bodies would become unst
when the attractive interaction, characterized by the coeffic
(2A), is sufficiently strong. Evidently, the presen
Transactions of the ASME
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analysis based on the general interaction laws~d! is valid not only
for van der Waals interaction, but also for electrostatic interact
between two oppositely charged solid layers.

Prior to surface instability,w15w250 ands5s0 , and substi-
tution of ~6! and ~7! into ~1! and ~3! gives

@12ah1
2D21bh1

4D42eh1
6D61gh1

8D8#t1

5@c2dh1
2D21 f h1

4D42kh1
6D6#

h1

E1
s0 ,

@12ph2
2D21qh2

4D42th2
6D6#

h2

E2
s0

5@rh2
4D42sh2

6D61uh2
8D8#t2 (8)

wheres05s(D2(t11t2)), as defined by~7!. Assuming that the
deflections of the elastic layers are small compared to the in
gapD ~@5,6#!, the influence of the spatial nonuniformity of the ga
d0 on the coefficientA can be neglected. Thus, throughout t
paper, the coefficientA is assumed to be a constant.

To study surface instability of the film-plate system, we sh
focus on the existence condition for a nonzero solution (w1 ,w2).
The governing equations forw1 andw2 can be obtained from Eqs
~1!, ~3!, and~8!, as follows:

@12ah1
2D21bh1

4D42eh1
6D61gh1

8D8#w1

52A
h1

E1
@c2dh1

2D21 f h1
4D42kh1

6D6#~w11w2!, (9)

@rh2
4D42sh2

6D61uh2
8D8#w2

52A
h2

E2
@12ph2

2D21qh2
4D42th2

6D6#~w11w2!

(10)

whereA is a constant. Here, because the wavelength of sur
instability is usually much larger than the gap width between
two surfaces, the effect of the surface energy is small~@5,6#!, and
thus has been neglected. Therefore, surface instability of the fi
plate system occurs when the coupled Eqs.~9! and ~10! admit a
nonzero solution. As will be seen below, this becomes poss
when the interaction coefficient (2A) is sufficiently large.

3 Instability Mode of a Suspended Elastic Plate
To study surface instability of the film-plate system, it is help

to first understand the individual instability modes of the elas
film on a rigid substrate and the suspended elastic plate when
are attracted by a rigid flat. Surface instability of an elastic film
a rigid substrate interacting with a rigid flat was studied in@5,6#,
where it was shown that the critical value of (2A) is proportional
to the surface complianceh/E of the film, and the wavelength o
the instability mode scales with the film thickness, independe
of the length of the film. In particular, when the film on a rig
substrate is incompressible (n151/2), the critical value of
(2A), denoted by (2A1), is about 2.07E1 /h1 ~@5,6#!.

For a suspended elastic plate attracted by a rigid plane,
governing equation can be obtained by takingE15` andw150
in ~9! and ~10!. Thus, Eq.~10! gives

2A@12ph2
2D21qh2

4D42th2
6D6#

h2

E2
w2

5@rh2
4D42sh2

6D61uh2
8D8#w2 . (11)

Let us consider a hinged plate~as shown in Fig. 1! and assume
that w2(x)}sin(mx), wherem is a wave number. It follows from
~11! that
Journal of Applied Mechanics
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2A5
E2@r 1sh2

2m21uh2
4m4#h2

3m4

@11ph2
2m21qh2

4m41th2
6m6#

. (12)

It can be verified that RHS of~12! is an increasing function of the
wave numberm. If the length of the plate isL, the ratio (mL)/p
must be a positive integer to meet the hinged edge conditio
Hence, the minimum of (2A) given by ~12! is obtained atm
5p/L. This means that the suspended plate has a half-wave
stability mode, just like the buckling mode of a hinged Eul
column. Further, according to the basic assumption of an ela
‘‘plate,’’ ( hp/L)2 should be smaller than unity. Thus, it turns o
from ~4! and~12! that all higher-order coefficients,p, q, s, t, andu,
have a negligible effect on surface instability of a suspended pl
and the critical value of a~hinged! suspended plate attracted by
rigid flat is approximately

2A2'
E2p4h2

3

12~12n2
2!L4 . (13)

Hence, surface instability of a suspended plate is different fr
a film on a rigid substrate at least in the following three aspe
~1! the critical value of (2A) is inversely proportional toL4 for
the former, but independent ofL for the latter;~2! the former has
a long-wave mode with the wavelength scaling with the length
the plate, while the latter has a short-wave mode with the wa
length scaling with the film thickness;~3! the higher-order terms
of Kerr’s model are negligible for the instability of a suspend
plate attracted by a rigid body, but essential for a film on a rig
substrate~as illustrated in Section 5!. In particular, the ratio of the
critical value for a suspended plate to the critical value for a fi
on a rigid substrate is approximately

l5
A2

A1
'

E2p4h1h2
3

24~12n2
2!E1L4 , A1522.07

E1

h1
. (14)

In what follows, surface instability of the film-plate system d
picted in Fig. 1 is studied, with an emphasis on the role of
competition between the long-wave mode of the suspended p
and the short-wave mode of the film on a rigid substrate.

4 Surface Instability of the Film-Plate System
Let us now consider the condition for the existence of a n

zero solution (w1 ,w2). Note that the coefficient (2A), as the
loading parameter, appears only on RHS of~9! and ~10! with the
sum (w11w2). To obtain a simple rational expression for
(2A), let us defineW15w11w2 , andW25w12w2 . Thus, Eqs.
~9! and ~10! become

2A@12ph2
2D21qh2

4D42th2
6D6#

h2

E2
W11@rh2

4D42sh2
6D6

1uh2
8D8#W15@rh2

4D42sh2
6D61uh2

8D8#W2 ,

@12ah1
2D21bh1

4D42eh1
6D61gh1

8D8#W112A
h1

E1

3@c2dh1
2D21 f h1

4D42kh1
6D6#W1

52@12ah1
2D21bh1

4D42eh1
6D61gh1

8D8#W2 . (15)

Let W15X sin(mx) and W25Y sin(mx), whereX and Y are two
undetermined constants andm is a wave number. Substituting
these expressions into~15! yields

2AS
h2

E2
X1TX5TY, LX12A

h1

E1
RX52LY, (16)

where

S5@11pa2Z1qa4Z21ta6Z3#,

T5@ra4Z21sa6Z31ua8Z4#,
MARCH 2002, Vol. 69 Õ 99
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L5@11aZ1bZ21eZ31gZ4#, R5@c1dZ1 f Z21kZ3#,

Z5h1
2m2,

h2

h1
5a. (17)

Since the existence of a nonzero solution (w1 ,w2) is equivalent to
the existence of a nonzero solution (W1 ,W2), the condition for
surface instability is given by the existence condition for a no
zero solution~X,Y!. In doing so, a simple rational expression
derived from~16! for the interaction coefficientA as

2A
h1

E1
5

LT

bSL1RT
, (18)

where

b5

h2

E2

h1

E1

.

It is verified that RHS of~18! approaches zero monotonical
whenZ tends to zero.

If the suspended plate is hinged at its edges, we have

m5
np

L
, n51,2,3 . . . . (19)

Therefore, the critical value of (2A) and the instability mode of
the film-plate system can be determined easily by identifying
minimum of ~18! and the associated value ofZ under the con-
straint~19!. In particular, it follows from~19! the admissible val-
ues ofZ are bounded from below by the condition

Z5~mh1!2>S ph1

L D 2

. (20)

Thus, the limit caseZ50 is excluded by condition~20!. In what
follows, surface instability of the film-plate system is studied
identifying the minimum of~18! within the range bounded by
~20!. Obviously, the lengthL of the suspended plate enters t
problem through condition~20!.

5 Results and Discussions
First, to demonstrate the efficiency of the present method, le

consider the case when the upper plate is rigid and thusb50. In
this case, Eq.~18! gives

2A1

h1

E1
5

L~Z!

R~Z!
. (21)

For example, when the elastic film is incompressible (n151/2), it
can be verified easily that RHS of~21! has a unique minimum
which is about 2.063 and attained at (mh1)254.8. Thus, the cor-
responding critical value of (2Ah1 /m1) is about 6.19~wherem is
the shear modulus and thusE53m when n51/2!, which is at-
tained ath1m52.19. These results are in excellent agreement w
the values (2Ah/m)56.22 andhm52.12, obtained by the con
ventional method~@5,6#!. The present method and the result~21!
are much simpler than the conventional method. In particular,
present method is applicable to both incompressible and c
pressible elastic layers. Here, it should be stated that if a low
order Kerr-model~1! with g5k50 is used, the critical value o
(2Ah/m) predicted by the present method will be about 7, w
(mh)51.7. Further, if the lowest-order Kerr model withe5 f
5g5k50 is used, the predicted critical value of (2Ah/m) by
the present method will be about 9, withhm51.3. Therefore, in
contrast to a suspended plate attracted by a rigid flat for which
higher-order terms of the Kerr’s model~3! have a negligible effect
on the critical value and instability mode~see Section 3!, the
100 Õ Vol. 69, MARCH 2002
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higher-order terms of the Kerr model~1! for a film on a rigid
substrate play an indispensable role in the surface instability of
film.

Now, let us examine surface instability of the film-plate syste
Since the effect of Poisson’s ratio is less important for both
suspended plate~see~4!! and the film on a rigid substrate~@5,6#!,
we shall neglect the Piosson’s ratio of the suspended elastic p
~thusn250!, and assume that the elastic film on a rigid substr
is incompressible (n151/2).

Case I: Stiff Thick Plates. First, let us examine the cas
when the suspended plate is much stiffer and also thicker than
compliant film on a rigid substrate. For instance, leta510 and
b50.2, 0.1, 0.01, 0.001, and 0.0001, respectively. In these ca
it is found that~18! has an internal local minimum, valued aroun
2.05 to 2.06, within a very narrow rangeZP@4.7,4.8#. Appar-
ently, this minimum corresponds to the critical value and insta
ity mode of the film on a rigid substrate given by~21!. On the
other hand, because~18! approaches zero monotonically whenZ
tends to zero, there is a special value ofZ below which ~18! is
lower than its internal local minimum. The dependency onb of
this special value ofZ are shown in Table 1 fora510. Hence, if
RHS of ~20! is larger than this special value, the admissible mi
mum of ~18! restricted by~20! is provided by the internal loca
minimum. In this case, the critical value and the instability mo
of the system are determined by the internal local minimum or
other words, by the elastic film. On the other hand, if RHS of~20!
is smaller than the special value listed in Table 1, the admiss
minimum of ~18! is provided by the smallest admissible wav
number given by~20! because whose corresponding value of~18!
is smaller than the internal local minimum. In this case, the cr
cal value and the instability mode of the system are determined
the suspended plate. Note that RHS of~20! is inversely propor-
tional to L2, the above results indicate that the critical value a
the instability mode of the film-plate system are determined by
film when the plate is sufficiently short, or by the suspended p
when the plate is sufficiently long.

This conclusion has a simple interpretation. In fact, the spe
values listed in Table 1 are defined by the condition that the c
cal value of the plate is equal to the critical value of the film~that
is, l51!. Thus, this special value ofZ can be estimated by com
bining l51 with the lower bound of~20!, which yields

Z'
5Ab

a2 . (22)

This result is applicable only when RHS of~22! is smaller than
unity, as required by the condition~20!. In particular, formula~22!
predicts that this special value is inversely proportional toa2. To
confirm this, this special value ofZ is calculated fora5100 and
listed in Table 1. The results of Table 1 confirm that this spec
value ofZ is inversely proportional toa2. Finally, it is stated that,
for all cases listed in Table 1, the parametersa andb satisfy the
requirement that RHS of~22! is much smaller than unity.

Case II: Stiff Thin Plates. It is noted that the stability
strength of the suspended plate is proportional to the cube o
thicknessh2 , while the stability strength of the film on a rigid
substrate is inversely proportional to its thicknessh1 . Thus, it is
expected that surface instability of the film-plate system re
heavily on the thickness-ratioa. Hence, another case of physic
interest is when the stiff plate is thin compared to the film. Fir

Table 1 Special value of Z below which „18… is lower than its
internal local minimum

bÄ0.2 Ä0.1 Ä0.01 Ä0.001 Ä0.0001

a510 0.03 0.018 0.0047 0.0015 0.00048
a5100 0.0003 0.00018 0.00005 1.531025 4.831026
Transactions of the ASME
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let us consider the casesa51 andbP@1028,1024#. It is found
that ~18! still has an internal local minimum, valued around 2.
to 2.1, within a narrow rangeZP@4.0,4.8#. Apparently, this inter-
nal local minimum corresponds to the critical value and instabi
mode of the film on a rigid substrate given by~21!. On the other
hand, because~18! approaches zero whenZ tends to zero, there is
a special value ofZ below which~18! is lower than the interna
local minimum. The dependency onb of this special value ofZ is
shown in Table 2 fora51. It is verified that the special value
listed in Table 2 fora51 can also be estimated approximately
formula ~22!.

Furthermore, let us consider the plates even thinner than
film. For example, let us considera50.1 andbP@1028,1024#.
Two new phenomena are observed forb.0.00001. First, in these
cases~a50.1 andb.0.00001!, the special values ofZ listed in
Table 2, below which~18! is lower than 2.05, are no longe
smaller than unity. Second, it is found that~18! becomes a mono
tonic function ofZ even for larger values ofZ and no longer has
an internal local minimum. The interpretation is simple: The pl
is so thin that its stability strength is always lower than that of
film even when the length of the plate is just few times the pl
thickness. In this case, an internal local minimum of~18! is ab-
sent, reflecting the fact that the film-plate system always exhi
the long-wave instability mode of the suspended thin plate and
short-wave instability mode of the film will not play any role.

To demonstrate these results clearly, let us plot the sixth roo
expression~18! as a function ofZ1/6 over a relevant range fo
several typical cases. First, let us consider thinner plates wita
50.5 anda50.05, respectively. The sixth root of expression~18!
is plotted againstZ1/6 in Figs. 2 and 3 for various values ofb. It is
seen that, for givena, ~18! has an internal local minimum fo
smaller values ofb, but the internal local minimum disappears f
relatively larger values ofb. The biggest value ofb which admits
an internal local minimum of~18! can be estimated roughly b
setting RHS of~22! equal to unity.

This phenomenon does disappear for very thick plates. For
ample, let us consider thicker plates witha51000 and a
510,000, respectively. The sixth root of expression~18! is
sketched in Figs. 4 and 5 againstZ1/6 for various values ofb. In

Table 2 Special value of Z below which „18… is lower than its
internal local minimum „when an internal local minimum of „18…
does not exist, as indicated by ‘‘ * ,’’ the special values of Z
collected here are those below which „18… is lower than 2.06 …

bÄ0.0001 Ä0.00001 Ä0.000001 Ä0.0000001 Ä0.00000001

a51 0.05 0.015 0.005 0.0015 0.0005
a50.1 13* 6* 0.8 0.17 0.048

Fig. 2 The interaction coefficient determined by „18… for thin
plates with aÄ0.5 which shows the dependency on b of the
existence of an internal local minimum of „18…
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all of the cases shown in Figs. 4 and 5,~18! has an internal local
minimum, and thus the critical value and instability mode of t
film-plate system are determined by the minor of the internal lo
minimum and the value of~18! at the admissible lower bound
~20!. When the length of the plate is sufficiently short, the low
bound ~20! is so large that the internal local minimum is lowe
than the value of~18! at the lower bound. Thus, the film-plat
system exhibits the short-wave instability mode of the film. Th
means that not only the film, but also the plate, will exhibit t
short-wave instability mode. On the other hand, if the plate

Fig. 3 The interaction coefficient determined by „18… for thin
plates with aÄ0.05 which shows the dependency on b of the
existence of an internal local minimum of „18…

Fig. 4 The interaction coefficient determined by „18… for thick
plates with aÄ1000 which indicates the existence of an internal
local minimum of „18…

Fig. 5 The interaction coefficient determined by „18… for thick
plates with aÄ10,000 which indicates the existence of an inter-
nal local minimum of „18…
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sufficiently long, the lower bound~20! is so small that the interna
local minimum is higher than the value of~18! at the lower bound.
In this case, the film-plate system exhibits the long-wave mod
the suspended plate. Thus, not only the plate, but also the
will exhibit the long-wave instability mode of the plate.

6 Conclusions
This paper gives a study of surface instability of an elastic fi

fixed on a rigid substrate interacting with a suspended ela
plate. The analysis is based on a novel method much simpler
the conventional method used for surface instability of an ela
film interacting with a rigid body~@5,6#!. The efficiency and ac-
curacy of the present method is demonstrated by excellent ag
ment between the predicted results and the known data for a
cial case. The present results show that the competition betw
the long-wave mode of the suspended plate and the short-w
mode of the film plays a crucial role in surface instability of t
film-plate system. In particular, it is found that

~1! when RHS of~22!, determined by the geometrical and m
terial parameters of the film-plate system, is larger than or clos
unity, the stability strength of the suspended plate is lower t
the film on a rigid substrate even for the shortest plate-lengths
this case, the interaction coefficient given by~18! has no internal
local minimum, and thus the film-plate system exhibits the lon
wave instability mode of the suspended plate determined by
lower bound~20!.

~2! when RHS of~22! is smaller than unity, the interactio
coefficient given by~18! has an internal local minimum represen
ing the short-wave mode of the film on a rigid substrate. Thus,
critical value and instability mode of the film-plate system a
determined by the film if the plate is short enough, or by t
suspended plate if the plate is long enough.
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Appendix
The method suggested here is based on a relation betwee

surface normal deflection and the surface normal stress of an
tic layer ~see~1!,~2! or ~3!,~4! in the text!. Such a relation is given
by Kerr @28# for an elastic layer resting on a frictionless rig
substrate. Here, Kerr’s method is used to derive a similar rela
for an elastic layer fixed on a rigid substrate, or a suspen
elastic layer. To demonstrate this, let us begin with Kerr’s expr
sions for the tangential stress, vertical normal stress, and two
placement components under plane-strain

sxz52
1

2
@zD2 cos~zD!2D sin~zD!#X08

2Fcos~zD!1
1

2
zD sin~zD!GX18

2
1

2 Fz cos~zD!1
1
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sin~zD!GX282
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sin~zD!X38 ,
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zD sin~zD!GX09
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2
zD sin~zD!GX1
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2 Fsin~zD!

D
1z cos~zD!GX21

z

2D
sin~zD!X3G

where ux and uz are the displacements along thex and z-axes,
respectively,z is the upward vertical coordinate measured fro
the surface of the elastic layer,E andn are the Young’s modulus
and Poisson ratio of the elastic layer,Xi(x) ~i 50, 1, 2, 3! are
some unknown functions ofx, and ‘‘/’’ denoted their derivatives.
First, for a suspended elastic layer subjected to a normal stres
one of its surfaces, the boundary conditions on the surfacez
50) and (z52h) are

sxz~x,2h!50, szz~x,2h!50, sxz~x,0!50,

uz~x,0!5w, szz~x,0!5s.

Thus, we have the following five conditions:

X18~x!50,

1

2
@2hD2 cos~hD!1D sin~hD!#X08

1
1

2F2h cos~hD!2
1

D
sin~hD!GX28

1
1

2

h

D
sin~hD!X3850,

Fcos~hD!1
1

2
hD sin~hD!GX09

1
h

2D
sin~hD!X29

2
1

2Fsin~hD!

D3 2
h

D2 cos~hD!GX3950,

X095s,

2~12n2!
1

D3 X385Ew.

One can eliminateX0 , X1 , andX3 and obtain the two relations
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sin~hD!X28

1
1

2
@D sin~hD!2hD2 cos~hD!#E* w50.

Thus, eliminatingX2 leads to a simple relation betweenw ands
as

F11sin~hD!
1

hD
cos~hD!Gs

1
1

2
@sin~hD!sin~hD!2h2D2#E*

w

h
50.

Equations~3! and ~4! in the text can be obtained from the abo
relation by expanding the trigonometric functions in power ser
of ~hD! and retaining the first three terms.

Similarly, for an elastic layer fixed on a rigid substrate, t
boundary conditions on its surfaces are

ux~x,2h!50, uz~x,2h!50, sxz~x,0!50,

uz~x,0!5w, szz~x,0!5s.

Thus, in a similar way, a simple relation betweenw ands can be
found as

F1

2
h~11n!2sin~hD!cos~hD!

3F 1

2D
~11n!~324n!G Gs ~12n2!

E

5F1

4
~11n!~324n!sin~hD!sin~hD!

2~12n2!~12n!1
1

4
~11n!h2D2Gw.

Equations~1! and ~2! in the text can be obtained from the abo
relation by expanding the trigonometric functions in power ser
of ~hD! and retaining the first three terms. In particular, the re
tions ~1!–~4! can also be applied to two-dimensional patterning
elastic layers providedD2 is replaced by¹2.
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Adherence of a Rectangular Flat
Punch Onto a Clamped Plate:
Transition From a Rigid Plate
to a Flexible Membrane
A linear elastic solution is proposed for the adhesion/delamination of a constrained
film adhered to a rectangular flat punch. As the punch is pulled away by an external
the film deforms and gradually delaminates until a line contact is left prior to comp
separation. This is in sharp contrast with the finite pull-off contact radius as predicte
the classical Johnson-Kendall-Roberts theory for adhesion between solid bodies. In
to portray the transition from a platelike to a membranelike behavior, the film thickn
and stiffness are allowed to span a wide range of values. Simple experiments d
strated the validity of the theory.@DOI: 10.1115/1.1303824#
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1 Introduction

Thin film adhesion is an important subject in many fields. F
instances, in microelectronics, good adhesion is required betw
encapsulating polymer films on silicon chip to enhance mech
cal reliability, and in biological sciences, cell locomotion requir
reasonable adhesion between thin cell membrane and substr
and agglomeration/division of cells involves cell-cell adhesio
decohesion. It is therefore essential to formulate the adhesive
tact mechanics for bodies enclosed by thin films.

Hertz @1# and Boussinesq@2# introduced the classical contac
mechanics for a convex solid body indenting on a continuum s
strate. Johnson et al.@3# later extended the work to include adh
sion at the contact and derived the now-celebrated John
Kendall-Roberts ~JKR! theory. Kendall @4# formulated the
adhesive contact mechanics of a circular flat punch in contact
an elastic half-space, which was later modified by Maugis@5# to
include different punch geometries. Contact mechanics for
films has attracted much attention lately. Plaut et al. studied
deflection and buckling of a bent elastica in contact with a
surface~@6#!. Wan considered the adherence between an axis
metric punch and a thin flexible film~@7#!. In this paper, we focus
on a new configuration: the adhesion between a rectangular
punch and a thin film constrained at two opposite ends~while the
other two ends remain free!. The punch is gradually pulled awa
from the film and thus driving a delamination into the punch-fi
interface. The film is allowed to span a wide range of thickn
and mechanical compliance, rather than being confined to
classical limits of either a plate under pure bending or a me
brane under pure stretching. The new elastic model is der
based on a simple energy balance and linear elasticity. Exp
ments with an interface made by adhering a commercially av
able pressure-sensitive tape onto an aluminum punch serve
lustrate the theory.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 12, 20
final revision, Oct. 15, 2001. Associate Editor: K. Ravi-Chandar. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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2 Theory
Figure 1 shows a thin isotropic film with unit width, thicknes

h, elastic modulus,E, Poisson’s ratio,n, and flexural rigidityD
5Eh3/12(12n2), being adhered onto a rigid substrate with
rectangular opening of length,2l. A rectangular flat punch is then
pulled away from the membrane by an external load,F, so that the
contact area of length,2c, diminishes until complete separation
the film-substrate interace. The free hanging film on either side
the contact, with an initial length (l 2c), is strained by a uniform
uniaxial membrane stress ofN along the midplane of the films
The debonding angle, a measure of the inclination of the film
the plate, is assumed to be small hereafter. Note that this ang
determined by the geometry and isindependentof the film thick-
ness. For simplicity, viscoelasticity of the polymer film is n
considered in the present model. It is assumed that only the f
hanging regionsx<( l 2c) andx>( l 1c) experience bending and
stretching while the contact region (l 2c)<x<( l 1c) is free from
mechanical stresses. We will first consider the elastic deforma
of the film as a consequence of the external load without dela
nation, before proceeding to the delamination mechanics.

2.1 Constitutive Relation Without Delamination. The
profile w(x) of the free hanging film is governed by linear ela
ticity ~@8,9#!

D
d2w

dx2
5Nw2

Nx

2
2M0 (1)

whereM0 is the bending moment atx50. Equation~1! be rewrit-
ten as

d2v

dj2
2b2v52wj2m0 (2)

with a set of dimensionless quantities defined as follows:

j5
x

l
, v5

w

h
, l512

c

l
, m05

M0l 2

Dh
,

b5S Nl2

D D 1/2

and w5
Fl 3

2Dh
. (3)

The parameterb represents the ratio of membrane stress to fi
rigidity: ~i! for a plate,D@Nl2 and b→0; and for a membrane
D!Nl2 andb→`. Assuming being clamped at opposite ends,

1;
the
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ill
E
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profile approaches zero gradients at the contact edges becau
nonzero bending. There are therefore three boundary conditio

~dv/dj!50 at j50 and j5l (4)

v50 at j50 (5)

Solving ~2! exactly,

v5
w

b3 H 2sinh~bj!1Fcosh~bl!21

sinhbl G@cosh~bj!21#1bjJ .

(6)

The displacement traveled by the punch is given by

v05vuj5l5
w

b H @cosh~bl!21#2

sinh~bl!
2sinh~bl!1blJ . (7)

The average membrane stress is given by~@8,9#1!

N5
Eh

l l ~12n2E
0

l 2c1

2 S dw

dx D 2

dx. (8)

Substituting~6! into ~8!, the normalized load takes the form of

w5
b2

A6

cosh~bl/2!

F11
cosh~bl!

2
2

3 sinh~bl!

2bl
G1/2. (9)

The constitutive relationw(v0) can be found analytically for a
fixed l by eliminatingb from ~7! and~9!. The exact expression i
not given here though it can be obtained by software such
MATHEMATICA and will cover a number of pages. We choose
showw(v0) in Fig. 2 as a parametric plot for various values ofl,
usingb as the varying parameter. The limiting cases of plate a
membrane are shown as dashed lines. As we suggested e
~@9#!, w(c0) can be written asw}v0

n , wheren is defined to be

1In article 2 of reference@8#, the membrane stress is computed for the cylindri
bending of uniformly loaded rectangular plates with simply supported edges~Eq. ~5!
in @8#!. The same expression is valid in the present model.

Fig. 1 A rectangular punch adhered onto a thin film con-
strained at two opposite ends
Journal of Applied Mechanics
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n5
d~ log w!

d~ log v0!

5@bl22 tanh~bl/2!#

3F 36bl cosh~bl/2!16~bl cosh~3bl/2!

1~2b2l2221!sinh~bl/2!221 sinh~3bl/2!

~4b2l226!cosh~bl/2!1~2b2l216!cosh~3bl/2!

1~3bl12b3l3!sinh~bl/2!29bl sinh~3bl/2!

G
(10)

such that 1<n<3, with the lower and upper limits correspondin
to platelike and membranelike behavior, respectively.

For a thick and stiff plate,v~j! is derived by puttingb50 in ~2!
and integrating with respect toj twice while keeping~4! and~5!.
Thus,~6! and ~7! become

v5
w

2 S lj2

2
2

j3

3 D or w56w0S lx2

2l 2
2

x3

3l 3D (11)

v05
wl3

12
or w05

Fl 3l3

24Dh
, (12)

respectively, identical to the classical elastic solution~@8,9#!.
Equation~12! implies thatn51 andw}v0 as expected classically
Here the punch displacement is small compared to the film th
ness (v0!1) and bending is dominant. As for a thin and flexib
membrane, substitution ofb→` reduces~9! to w5b3/61/2, and
~6! and ~7! become

v5S w

b2D j or w5
w0

l l
x (13)

w5S 6

l3D v0
3 or F5S Eh

12n2D S w0

l l D
3

, (14)

respectively. Alternatively,~13! and ~14! can also be obtained by
putting b→` in ~2! and ignoring both (d2v/dj2) andm0 . Equa-
tion ~14! implies thatn53 andw}v0

3 ~@9,10#!. Herev0 is large
(v0@1) and stretching prevails over bending. Note that~11! to
~14! are consistent with the V-peel configuration where the ex

al

Fig. 2 Constitutive relations for various l without delamina-
tion „solid lines … and the limiting cases of pure bending and
stretching „dotted lines …. The gradient nÄ1 in the bending
dominant region and becomes 3 in the stretching dominant re-
gion. An intermediate transition zone with 1 ÏnÏ3 lies between
0.1Ïv0Ï10.
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nal load is applied in a central line andl51 @9,11#. The film is
now so flexible that virtually no bending moment exists even
the contact edges, resulting in a nonzero debonding angle
violates the boundary condition~4! in the limit.

There is one shortcoming of the above theory. When the en
punch surface is in contact with the film~l50!, there is no free-
hanging film to store up the elastic energy. There are two se
ingly nonphysical consequences:~i! a singular local membrane
stressb and ~ii ! an infinitew to maintain equilibrium. The ambi-
guity can be removed by placing the root of rotation at the con
interface, instead of the midplane of the film~@12#!. The local
stress will then become a function of distance from the con
corner and will be governed by the stress intensity factor~@13#!, a
subject that is beyond the scope of this paper. The severity o
problem is relaxed when the punch is narrower than the film sp
i.e., the initiall is nonzero.

2.2 Constitutive Relation With Delamination. When the
punch displacement exceeds a certain threshold, delamina
drives into the interface from the two opposite edges shrinking
contact area by 2l dl. The mechanical energy release rate~in
J.m22), G, under a fixed load configuration~constantF! is defined
to be ~@13#!

G5
1

2l S ]Uc

]l D
F,n

(15)

where the complementary energy is

Uc5E w0dF5
n

11n
Fw0 (16)

using the relationw}v0
n . Defining a normalized quantityG

5G(Dh2/ l 4)21, substitution of~7! and ~16! into ~15! yields

G5
1

2 S n

11nDwS ]v0

]l D
w

5
1

2 S n

11nD w2F tanh2~bl/2!

b2 G . (17)

At equilibrium, G5g with g the adhesion energy of the punc
film interface, or, equivalently,G5G* 5g(Dh2/ l 4)21. EachG*
is therefore determined by a pair ofb andl. Theb-l plot can be
conformally mapped into aw-v0 space using~7! and ~9!.2 Note
that an analytical expression forG(w,v0) is possible, but a nu-
merical approach is sought.

In the limiting case of a plate, substituting~12! into ~16! and
~15!, or simply puttingb→0 into ~17!, four equivalent expression
can be derived:

G5
3

2 S wv0

l D5
1

8
~wl!2518

v0
2

l4
5S 9

32D
1/3

~w2v0!2/3. (18)

At equilibrium (G5G* ), v0}l2 and w}v0
21/2, so that as the

punch displacement increases, delamination grows and the ap
force diminishes from a maximum. In the limit ofl51, G
5G(Fw0/2l l )2153/2, which is consistent with a V-peel test un
der pure bending~@19#!. Similarly, in a membrane, substitution o
~14! into ~16! and ~15! yields

G5
3

4 S wv0

l D5S 9

128D
1/3

w4/35
9

2 S v0

l D 4

. (19)

At equilibrium, w remains constant regardless of the delaminat
length. In the limit ofl51, G5G(Fw0/2l l )2153/4, which is
consistent with a V-peel test under pure stretching~@9,14#! and the
classical ‘‘pull-off’’ test ~@11#!.

Figure 3 shows the constitutive relationw(v0) for variousG*
~solid lines!, and the plate and membrane limits~dashed lines!.

2For a chosen value ofG, b can be found numerically for a fixedl. With suchb,
a pair ofw andv0 are found. The entire functionw(v0) can thus be traced for a fixed
G by iterating a range ofl.
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Consider the case whereG* 5104 ~curve ABCDE!. Starting with
point A~l50!, delamination propagates into the interface as
punch moves upwards. Along section AB, the film behaves a
plate until pint B~l50.1! where it begins to deviate. The sectio
BCD denotes a bending to stretching transition and comprise
local minimum. From C to E, the delamination becomes progr
sively more membranelike and the slope gradually tends to z
A line contact~l51! is finally reached at E, before a comple
detachment of the punch from the film, or a ‘‘pull-off.’’3 Another
example is noted forG*510 ~curve A8B8C8!. Beginning from
l50, the delamination passes through A8 ~l50.4!, then B8 ~l
50.7!, and finally reaches pull-off at C8 ~l51!. The film behaves
like a plate throughout the delamination process, with virtually
trace of stretching. Thus for allG* below 10, the film is essen
tially platelike andw(v0) is always monotonically decreasing.
is interesting to note thatl51 at ‘‘pull-off’’ always. Figure 4
shows the critical forcew† and punch displacementv0

† at pull-off
as monotonically increasing functions ofG* . The limiting pull-off
parameters are such that for a plate,~18! requires

F†5F 8Eg

3l 2~12n2!
G 1/2

h3/2 (20)

w0
†5F2l 4g~12n2!

3E G1/2 1

h3/2
(21)

and for a membrane,~19! requires

F†5F 512Eg3

27~12n2!
G 1/4

h1/4 (22)

w0
†5F8l 4g~12n2!

3E G 1

h1/4
. (23)

3In the literature, ‘‘pull-off’’ usually refers to the event of complete separati
under afixed loadconfiguration. In this paper, we adopt a loose definition to inclu
both fixed load and fixed grips.

Fig. 3 Constitutive relations for various l with delamination
„dark solid lines … and without delamination „gray lines …. The
dotted lines represent the bending and stretching limits. As
delamination propagates, the curve ABCDE cuts through all
gray curves of different l. The theoretical pure bending „mono-
tonic decreasing … and pure stretching „horizontal … limits are
shown as dashed lines.
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Thus,F† is always a monotonically increasing function ofh while
w0

† is monotonically decreasing.

3 Experiment
The aim of the following experiment was to demonstrate

delamination mechanics, rather than to measure the interface
ergy. As a simple illustration, a model interface was construc
by adhering a commercially available pressure-sensitive adhe
~PSA! tape onto an aluminum plate/punch. PSA was used bec
of the ease in sample preparation. Some remarks are worth no
First it is well known that the actual interface energy of a PSA
small compared to the interfacial resistance against delamina
growth ~@15,16#!. In the following experiments and analysis,g ~or
G* ! refers to the latter rather than the former. Secondly, the t
was a ‘‘composite’’ with a backing polymer sheet coated with
thin adhesive layer. However, since the elastic energy was st
mainly in the polymer film instead of the adhesive, and that
interlayer adhesion in a multilayer film~see later! was much stron-
ger than the punch-film interface, the composite characteris
was ignored.

A model interface was fabricated as follows~Fig. 1!. A rectan-
gular opening~50 mm3 65 mm! was machined into an aluminum
plate~100 mm3 150 mm and 6 mm thick!. A sticky tape of 5 mm
wide and 50mm thick, with an elastic modulus of 7006140 MPa
and Poisson’s ratio of 0.3, was then adhered to the back of
substrate. A polished flat aluminum punch~49.2 mm3 52 mm!
was brought into adhesive contact with the film via the rectang
opening. The small ratio of the film width to the substrate open
~1:10! was intentional so as to minimize the effects due to
anticlastic geometry of the front. The punch was then pulled aw
vertically from the film in a fixed grips configuration at cross-he
speeds ofv51, 2, and 5 mm.min21. A universal testing machine
recorded the load a as a function of the punch displacement.
periments were repeated for multilayer films to investigate
effects due to changes in thickness. The adhesive strength
measured by a standard 90 deg peel test to beg560610 J.m22.
For comparison purposes, a ‘‘weak’’ interface with an adhes
strength much less than 60 J.m22 was fabricated by spraying
the adhesive side of the film with mould release agent be
adhesion.

Typical data ofF(w0) are shown in Fig. 5 for~a! 1, 2, and 3
layers at v51 mm.min21, ~b! single layer atv51, 2 and 5

Fig. 4 The normalized critical force w† and normalized punch
displacement v0

† at ‘‘pull-off’’ as functions of a normalized ad-
hesion strength G* , along with the pure bending and pure
stretching limits „dashed lines ….
Journal of Applied Mechanics
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mm.min21, and ~c! single layer atv51 mm.min21 for the weak
interface. In Figs. 5~a! and 5~b!, as the punch moved away,F
increased before reaching a plateau. The fluctuation inF was the
result of surface roughness, air pockets inevitably trapped at
interface, antielastic geometry of the crack front, and stick-s
behavior during crack propagation. The plateau force was large
case of a thicker film, but was essentially independent of
cross-head speed. The minor difference due to different spe
could be the consequence of viscoelastic behavior of the poly
film. The strong interface led to av0

† andG* in the order of 100
and 109, respectively, which was well within the stretching dom
nant region and the membrane limit is sufficient to account for
delamination process~c.f. ~19!!. On the other hand, in Fig. 5~c!,
delamination in the weak interface showed a comparatively la
initial F that decreased gradually towards a plateau prior to p
off. Here v0 and G* were in the order of 100 and 106, respec-
tively, which fell in the bending-stretching transition where a
initial decrease in external load was expected.

A pull-off event with a line contact was observed in all me
surements. Figures 6~a! and 6~b! show the measuredF† andw0

† as
functions of film thickness, respectively. It was apparent that b
F† and w0

† were independent of the cross-head speed and
thicker film led to a lowerF† and a higherw0

† . Theoretical curves

Fig. 5 Typical data of F„w 0… for „a… cross-head speed of 1
mm.min À1 and 1 „solid curve …, 2 „dashed curve … and 3 „dotted
curve … layers of film, „b… single layer at cross-head speed of 1
mm.min À1

„circles …, 2 mm.min À1
„squares …, and 5 mm.min À1

„tri-
angles … and „c… single layer at cross-head speed of 1 mm.min À1

for a weak interface. Note the change of scale in „c….
MARCH 2002, Vol. 69 Õ 107
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according to~22! and~23! with g560610 J.m22 were also shown
for comparison. A significant deviation from theory was noted
w0

† , especially for a single layer film. This could be the result
a slight plastic yielding of the film. Yielding was minimal in thic
films.

4 Discussion
There are some distinct differences between our new model

the classical adherence of a flat punch on an elastic half-s
studied by Kendall@4# and Maugis@5#. When a flat rigid punch is
pulled away from a continuum substrate, an abrupt destructio
the entire interface occurs once a critical external load is reac
On the other hand, in a punch-film configuration, a gradual
stable shrinkage of the contact area is predicted until comp
detachment. The underlying reason is the presence of a stress
induced by the punch on the continuum substrate in the form
and its replacement by bending/stretching of the film in the lat
the damage done to the adhered as a result of pull-off is expe
to be minimal in a constrained film because of the zero con
area at pull-off. The rule is not exclusive, however. For instan
in case of a constrained film adhered onto an axisymmetric
punch~@7#!, a finite residual contact circle at pull-off is expecte
alluding to the similar prediction by the JKR theory.

The new model has an impact in many biological systems.
instance, a capsule encapsulated by a thin membrane~e.g., a red
blood cell! adheres itself to a substratum~e.g., a blood vesse
wall!, and detaches itself in the presence of internal forces~e.g.,

Fig. 6 „a… The measured pull-off force F† and „b… pull-off
punch displacement w 0

† as a function of number of film layers
in log-log plots for cross head speeds of 1 mm.min À1

„circles …,
2 m.min À1

„triangles … and 5 mm.min À1
„squares …. The theoreti-

cal curves with gÄ60 J.mÀ2
„solid lines …, and the upper and

lower limits „dashed lines … for DgÄ10 J.mÀ2 are also shown.
108 Õ Vol. 69, MARCH 2002
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cell locomotion! or external forces~e.g., osmotic pressure! ~@17#!.
Here the roles played by the film and the punch are juxtaposed
that, the punch~or substratum! is now stationary while the mem
branous cell in motion moves into and out of contact. When a
comes into adhesive contact with a rigid substrate, the cell w
‘‘stretches’’ itself in the noncontact area and ‘‘bends’’ towards t
contact circle. Bruinsma@18#, Albersdörfer et al. @19#, and
Kloboucek et al.@20# discussed such observation and showed t
the cell profile immediately outside the contact circle was giv
by

w~x!5S l

Rc
D H x2lF12expS 2

x

l D G J (24)

with l the capillary length andRc the radius of curvature. In close
scrutiny,~24! is consistent with and in fact equivalent to~6!. Both
~6! and ~24! comprise a linear term corresponding to stretchi
and an exponential term~replacing all hyperbolic functions in~6!
by exponential! due to bending. It is important to note that th
theoretical profile is correct only in a one-dimensional rectangu
contact but may not be applicable to a two-dimensional axisy
metric situation~e.g., a spherical capsule!. In fact, we showed
earlier that the contact mechanics is quite different in a case
circular punch on a thin flexible constrained film~@7#!.

5 Conclusion
We have derived the adhesive contact mechanics of a recta

lar flat punch on a constrained film, which was demonstrated
the simple experiment of sticky tapes adhered onto an alumin
substrate. A pull-off event is expected when the contact a
shrinks down to a line and the external force reaches a crit
threshold. This new model should be used in adherence betwe
thin film and a solid, instead of the classical punch-elastic h
space theory. Our new model is expected to have implication
thin-walled biological capsules.
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Adherence of an Axisymmetric
Flat Punch Onto a Clamped
Circular Plate: Transition From a
Rigid Plate to a Flexible
Membrane
A clamped circular film is adhered to a rigid cylindrical punch. An external force pu
the punch away causing delamination at the punch-plate interface. The deflec
of the film are discussed for a range of film thickness and stiffness, detailing the con
ous transition from a plate under bending to a membrane under stretching. An eq
rium theory of delamination mechanics is derived based on an energy balanc
complete separation at the punch-film interface, or the ‘‘pull-off ’’ event, is predic
when the contact circle shrinks to approximately 0.18 of the film diameter. The va
and trends, presented in dimensionless normalized form here, should have implic
in biological and colloidal sciences in relation to thin-walled capsules and in electron
in relation to thin encapsulating films.@DOI: 10.1115/1.1433477#
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1 Introduction
Thin film adhesion is an important subject in biology~@1#!,

electronics~@2#!, and colloids~@3#!. Most up-to-date studies ar
based on the celebrated Johnson-Kendall-Roberts~JKR! adhesion
theory and its various modified forms~@4,5#!, which proved to be
very useful in describing the adhesive contact between a r
punch and an elastic half-space~@6–8#!. One shortcoming is tha
the theory is confined to rigid solid bodies and therefore the
plication to bodies comprising thin flexible films is doubtful. F
instance, adhesion of membranous biological capsules does
develop the Hertzian stress field at the contact circle required
the JKR theory~e.g., an erythrocyte cell with a wall thickness
100 Å and elastic modulus of roughly 1.0 MPa adhered ont
rigid substrate~@9#!, and formation of adhesion plaque in ce
locomotion~@10#!!. A new adhesive contact mechanics is therefo
needed. We earlier constructed a one-dimensional model for
adhesion between a rigid rectangular punch and a thin film
different thickness~@11#!. A two-dimensional model was also de
rived for the adhesion between an axisymmetric punch an
membranelike film under pure stretching, where a ‘‘pull-of
event was predicted when the contact circle shrank to roug
0.19 of the film diameter~@12#!. In this paper, we attempt to re
derive the two-dimensional model, but relax the constraint of p
membrane. Films spanning a range of thickness and stiffness
the resulting mixed bending and stretching modes of elastic
formation will be considered.

Historically, large elastic deformation of circular plate w
studied extensively:~i! clamped plates under uniform pressure,
discussed in the classical works by Hencky, Nadai, and Way~all
summarized in Timoshenko and Woinowsky-Krieger@13#! and
more recent studies by Mansfield@14#, Sheplak@15#, and Wan
@16#; ~ii ! clamped plates under central point load, as discusse

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
12, 2001; final revision, October 15, 2001. Associate Editor: K. Ravi-Chandar.
cussion on the paper should be addressed to the Editor, Prof. Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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Malyshev@17#, Williams @18#, Chia @19#, and Wan@20#; and ~iii !
clamped annular plates subjected to axisymmetrical line l
around a central hole, where series or numerical solutions
available~@19,21#!. It is, however, difficult to manipulate serie
solutions to formulate analytical adhesion mechanics. In this
per, we will derive an exact analytical model based on line
elasticity, an average membrane stress approximation an
simple energy balance, similar to the various forms of blister te
we derived earlier~@16,22–24#!. The exact but nonlinear exten
sion will be left for future work.

2 The Constitutive Relation Without Delamination
Figure 1 shows a thin isotropic film adhered onto a rigid pla

with a central circular opening of radiusa. The film possesses a
flexural rigidity D5Eh3/12(12n2) with an elastic modulus,E,
Poisson’s ratio,n, and thickness,h. A cylindrical flat punch of
radius,a, is brought into an adhesive contact with the expos
film via the hole. An external force,F, is applied vertically to pull
the punch a distancew0 away from the film. The elastic mem
brane stress thus developed in the film causes an axisymm
delamination to drive into the punch-film interface. The conta
circle of radius,c, shrinks until the punch completely separat
from the film at ‘‘pull-off.’’ 1 For simplicity, the midplane of the
film is taken to be the neutral plane in the following discussio

The constitutive relation without delamination is derived as f
lows. Within the contact circle (r ,c), the film profilew(r ) con-
forms to the planar punch geometry. In the noncontact annu
(c<r<a), w is governed by the von Karman plate theory f
large deflection~@13#!:

d

dr F1

r

d

dr S r
dw

dr D G5
1

D F F

2pr
1Nr S dw

dr D G (1)

d

dr
~Nr1Nt!1

Eh

2r S dw

dr D 2

50 (2)ry
is-
eler,
04-
elf 1Here ‘‘pull-off’’ refers to either fixed load or fixed grips, as we suggested ear
~@11#!.
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dr
~rNr ! (3)

whereNr5s r /h and Nt5s t /h are, respectively, the radial an
tangential membrane stresses. The set of nonlinear equation
only be solved numerically~@19#!. To obtain an analytical solu
tion, we assumeNr'Nt'N for small strain so that the new con
figuration is the same as exerting an in-plane tensile load aro
the plate circumference. Now,~1! only is to be solved,~2! is
satisfied in the first approximation sincedw/dr'0, and ~3! is
automatically satisfied. It is convenient to normalize~1! by the
dimensionless quantities as follows:

j5
r

a
, W5

w

h
, z5

c

a
, z25

pc2

pa2 ,

b5ANa2

D
, w5

Fa2

2pDh
, u5

dW

dj
5

a

h

dw

dr
. (4)

The parameterb denotes the important ratio of stretching stress
bending rigidity such that~i! whenb→0, the film is platelike and
allows bending only, and~ii ! whenb→`, the film is membrane-
like and allows stretching only. Therefore,~1! is recast as follows:

j2
d2u

dj2 1j
du

dj
2~11b2j2!u5wj (5)

which is a linear modified Bessel differential equation. T
boundary conditions are

at j51, u50 and W50 (6)

Fig. 1 Sketch of a circular cylindrical flat punch adhered onto
a thin membrane constrained at the circular rim. A free-body
diagram showing the external force, bending moments and ten-
sile membrane stress.
Journal of Applied Mechanics
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at j5z, u50. (7)

An exact solution to~5! is found to be

u5wFC1I 1~bj!1C2K1~bj!2
1

b2jG (8)

where

C15
1

b2 F K1~bz!2K1~b!/z

I 1~b!K1~bz!2I 1~bz!K1~b!G (9)

C25
1

b2 F I 1~bz!2I 1~b!/z

K1~b!I 1~bz!2K1~bz!I 1~b!G . (10)

The functionsI i(x) and Ki(x) are thei th order of the first and
second kind modified Bessel functions, respectively. The profil
found by integrating~8! with respect toj from z to 1,

W5
w

b2 $C1b@ I 0~bj!2I 0~b!#2C2b@K0~bj!2K0~b!#2 log j%.

(11)

The central deflection, or punch displacement, is given byW0
5Wuj5z . Figure 2 shows the normalized profiles (W/W0) as a
function ofj for z50.1 andb51, 10, 100. Note that the slope a
j51 andj5z are always zero. The elastic energy is stored in
noncontact annulus of areap(a22c2)5pa2(12z2). The aver-
age membrane stress is found by~@11,25#!

N5
Eh

a2~12n2!
3

1

12z2 E
c

a 1

2 S dw

dr D 2

rdr (12)

or, in a normalized form,

b25
6

12z2 E
z

1

u2jdj. (13)

Substituting~8! into ~13!,

w5b2H 12z2

6@g~b!2g~bz!#J
1/2

(14)

where

Fig. 2 Film profiles for zÄ0.1 and bÄ1, 10, 100. Note that the
gradients at the outer and inner circles are zero at small b.
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g~x!5C1
2

x2

2 F S 11
1

x2D I 1~x!22S I 0~x!2
I 1~x!

x D 2G
1C2

2
x2

2 FK1~x!22K0~x!22
2K0~x!K1~x!

x G1
1

b2 log~x!

2
2

b
@C1I 0~x!2C2K0~x!#12C1C2H x2

2
@ I 0~x!K0~x!

1I 1~x!K1~x!#2xI1~x!K0~x!J . (15)

The constitutive relationw(W0) can now be found analytically by
eliminatingb from ~11! and~14!, though the very involved func-
tion is not given here explicitly.2 Since bothw andW0 are func-
tions of b, we choose to showw(W0) in Fig. 3 as a parametric
plot by varying b for fixed z, as suggested earlier in the on
dimensional model~@11#!. For convenience, the function is reca
into

w}W0
n (16)

with

n5
d~ log w!

d~ log W0!
5S W0

w D F]w

]bY ]W0

]b G . (17)

An analytical functionn(W0) can be derived by substituting~11!
and ~14! into ~17!, but is not given here. Figure 4 shows a pa
metric plot forn(W0) by varyingb.

Two limiting cases are of interest here. For a pure plate wit
small W0 and b;0, ~5! becomes an equi-dimensional ordina
differential equation and~11! collapses to

W5W0F ~12z2!~12j21j2 log j2!2z2 log z2~12j21 log j2!

~12z2!22z2 log z2 log z2 G
(18)

with

2The lengthy solution can be found by MATHEMATICA and covers many pag

Fig. 3 Constitutive relation w„W0… for various z as indicated.
The pure bending and pure stretching limits are shown as
dashed lines. There exists an intermediate bending-stretching
transition region.
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W05
f 1~z!

8
w (19)

where

f 1512z22
z2 log z2 log z2

12z2 . (20)

Heren51 andw(W0) is linear. Equation~19! is shown as dashed
lines in the bending dominant region in Fig. 3. In the case o
central point contact withz50 and f 1(z)51, ~18! reduces to the
familiar classical solution for a circular plate~@13#!:

W5
w

8
~12j21j2 log j2!. (21)

For a pure membrane with a largeW0 andb→`, ~11! reduces to

W5W0S log j

log z D (22)

where

W05F f 2~z!

24 G1/3

w1/3 (23)

with

f 25~12z2!log z2 log z2. (24)

Now n53 andw(W0) becomes cubic. Equation~23! is shown as
dashed lines in the stretching dominant region in Fig. 3. In
case ofz50, the contact circle reduces to a point and the pro
becomes an inverted cusp, in reminiscent of the shaft-loaded
ter test~@23#!. In the case of mixed bending and stretching in
film of intermediate thickness and stiffness, the transition zo
spans roughly two decades fromW050.1 to 10 and 1<n<3.

s.

Fig. 4 Gradient of the constitutive relation n as a function of
W0 for various z as indicated. When bending dominates at
small W0 , nÉ1; and when stretching prevails at large W0 , n
É3. In the intermediate region „0.1ËW0Ë10…, n lies between 1
and 3.
Transactions of the ASME
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3 Thermodynamics of Thin Film AdhesionÕ
Delamination

The thermodynamics of delamination can be constructed as
lows. The potential energy of the external load,UP , the elastic
energy stored in the elastic membrane,UE , and surface energy o
the contact circle,US , are defined as

UP52Fw0 (25)

UE5E Fdw05S 1

n11DFw0 (26)

Us52~pc2!g (27)

using ~16!, whereg is the adhesion energy of the punch-film i
terface. Following the formulation suggested by Maugis@8#, the
enthalpy,H, for fixed load~constantw! and the internal energy,U,
for fixed grips~constantW0! are given by

H5UP1UE1US (28)

U5UE1US . (29)

Four normalized quantities are defined as follows:

H̃5
H

~2pDh2/a2!
, Ũ5

U

~2pDh2/a2!

G5
G

~2Dh2/a4!
, G* 5

g

~2Dh2/a4!
. (30)

At delamination, a mechanical energy release rate is defined

G52
]

]~pc2!
~UP1UE!U

F

5
]UE

]~pc2!
U

W0

(31)

or, in a normalized form,

G52S n

n11Dw
]W0

]~z2!
. (32)

Note thatG ~or G! is identical in fixed grips and fixed grips con
figurations. The crack driving force, or ‘‘motif’’~@8#!, is defined
the gradient of eitherH̃ or Ũ such that

~G2G* !5
]H̃

]~z2!
5

]Ũ

]~z2!
. (33)

The contact circle expands whenG,G* , diminishes whenG
,G* , and stays stationary at equilibrium whenG5G* . The sta-
bility of the system is determined by@]G/](z2)# such that a nega
tive quantity corresponds to a stable equilibrium, positive for
unstable equilibrium~i.e., a spontaneous crack growth!, and zero
for a neutral equilibrium. The delamination mechanics is illu
trated by the two limiting cases as follows.

For a pure plate, substitutingn51 into ~28! and ~29! so that

H̃52
f 1

16
w22z2G* (34)

Ũ5
4

f 1
W0

22z2G* . (35)

Figure 5~a! shows a family of curves (H̃/G* ) as a function of
z2. Each curve possesses a local maximum, denoting an uns
equilibrium. The equilibrium curve is found by substituting~19!
into ~32!,

G52
w2

16 F d f1

d~z2!G
w

5xub50~wW0! (36)

with
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xub505
~12z21 log z2!2

2~12z2!~122z21z42z2 log z2 log z2!
(37)

which is shown as a dashed curve in Fig. 5~a!. If we now start
with a full punch-film contact withz51 and slowly raisew from
zero, no delamination is expected sinceH̃ is always a local mini-
mum atz51. Theoretically, it requires an infinite external load
initiate delamination. If any delamination is to occur, an ener
barrier must be overcome. Any deviation from the unstable eq
librium will lead to either spontaneous increase of the contact a
towardsz51 or decrease towardsz50. Figure 5~b! shows a fam-
ily of ( Ũ/G* ) as a function ofz2. Each curve possesses a loc
minimum, denoting a stable equilibrium. Substituting~32! into
~33!,

G54W0
2Fd~1/f 1!

d~z2! G
W0

. (38)

which is identical to~36!. Starting with z51 at W050, if we
gradually raiseW0 , the equilibrium point will move towards a
decreasingz, i.e., delamination. AtW0

†50.112761(G* )1/2 when
z†50.175754 andw†51.54548, the local minimum ofŨ is re-
placed by a point of inflexion. Further increase ofW0 results in a
complete separation between the punch and the film, or ‘‘p
off.’’

Fig. 5 A pure plate. „a… The enthalpy „H̃ÕG* … as a function of
contact area z2 under fixed load for †wÕ„G* …1Õ2

‡Ä1, 2, 5 and 10.
The dashed line joining the maximum of each curve represents
the unstable equilibrium. „b… The internal energy „ŨÕG* … as a
function of contact area z2 under fixed grips for †W0 Õ„G* …1Õ2

‡

Ä0.01, 0.04, 0.08, 0.112761. The dashed line represents the
stable delamination process. Pull-off occurs at the point of in-
flexion at W0

† .
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For a pure membrane under stretching only, Figs. 6~a! and 6~b!
show (H̃/G* ) and (Ũ/G* ), respectively, as functions ofz2. Sub-
stituting ~23! into ~32! to be

G5xub→`~wW0! (39)

with

xub→`5
222z22z2 log z2

4z2~12z2!log~1/z2!
(40)

which is identical to Williams’s solution~@25#!. Under a fixed
load, the punch-film interface is stable atz51 until w reaches
w†52.74636(G* )3/4. At this point, H̃ is a monotonic increasing
function of z and delamination occurs spontaneously untilz50.
Under fixed grips, delamination grows in a stable manner u
‘‘pull-off’’ happens at W0

†50.562441(G* )1/4 when z†

50.194545 andw†50.413392(G* )3/4.
The thermodynamics of thin film delamination with intermed

ate film thickness and stiffness under mixed bending and stre
ing is similar to the above description and will be illustrated in t
next section.

4 The Constitutive Relation With Delamination

For a fixedG* , w(W0) with delamination can be found b
substituting~11! into ~32! to obtainG~b, z! and then conformally
mapped into aw2W0 space using a method introduced earl
~@11#!. To illustrate the theory,G* 5104 is chosen and the corre

Fig. 6 A pure membrane. „a… The enthalpy „H̃ÕG* … as a func-
tion of contact area z2 under fixed load for †wÕ„G* …3Õ4

‡Ä0.5, 1.0,
2.0 and 2.74636. The dashed line joining the maximum of every
curve represents the unstable equilibrium. Spontaneous
delamination occurs at w†. „b… The internal energy „ŨÕG* … as a
function of contact area z2 under fixed grips for †W0 Õ„G* …1Õ4

‡

Ä0.3, 0.4, 0.5 and 0.562441. The dashed line represents the
delamination process. Pull-off occurs at the point of inflexion
at W0

† .
114 Õ Vol. 69, MARCH 2002
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spondingw(W0) is shown in Fig. 7. Curve AMP represents th
pure plate limit. Along the stable delamination branch AM, t
punch moves gradually away from the substrate, while the ex
nal force decreases. At the ‘‘pull-off’’ point M atz† where
(dW0 /dw)50, the delamination becomes spontaneous, resul
in a complete separation of the film from the punch, i.e.,
‘‘pull-off’’ event ~c.f., Fig. 5~b!!. Branch MP shows a positive
(dw/dW0) and is therefore unstable and physically inaccessib
Note that the curve terminates atP on the bending limit. Curve
JKL represents the pure membrane limit. Delamination is sta

Fig. 7 Curve ABC shows the constitutive relation with delami-
nation for G*Ä104. The solid gray line is the mixed bending-
stretching constitutive relation without delamination for a cen-
tral point load „zÄ0…. The two dashed gray curves AMP and
JKL show the bending and stretching limits, respectively.

Fig. 8 Constitutive relations with delamination for various G*
as indicated „solid lines …, along with the no-delamination rela-
tions for zÄ0 to 0.9 with an interval of 0.1 and zÄ0.95 „gray
lines ….
Transactions of the ASME
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along branch JK and nonphysical along branch KL. Point K is
‘‘pull-off’’ point at z† ~c.f., Figure 6~b!!. The curve terminates at L
on the stretching limit. Curve ABC represents the constitut
relation for a real film under mixed bending and stretching.
small W0;1, bending prevails andw(W0) follows closely AMP.
When W0 exceeds 1, membrane stretching becomes more do
nant andw(W0) is forced to deviate towards JKL. Pull-off occur
at point B. The branch BC is nonphysical, and the curve ter
nates at C. Figure 8 shows a family ofw(W0) for variousG* . All

Fig. 9 The critical load w† and punch displacement W0
† at

pull-off as functions of G* „solid lines …, along with the bending
and stretching limits „dashed lines ….
Journal of Applied Mechanics
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curves begin with a platelike behavior at smallW0 and eventually
terminate on the nondelamination curvew(W0) with z50. For
G* ,102, w(W0) lies mainly in the bending dominant regio
where stretching is negligible. ForG* .102, w(W0) deviates from
pure bending and approaches the stretching limit.

The pull-off radius depends weakly onb and is confined to a
narrow range of 0.175754<z†<0.194545~or, z†'0.18!. Figure 9
showsw† andW0

† at pull-off as monotonic increasing function
of G* , along with the two limits.

5 Discussion
It is interesting to compare our axisymmetric punch-film mod

with the one-dimensional rectangular punch-film model~@11#!,
Kendall’s adhesion models for circular flat punch with an elas
half-space and thin film~@7#! and JKR adhesion theory of soli
sphere to rigid substrate~@4#!. The comparison is summarized i
Table 1.

The rectangular punch-film model~@11#! has similar nondelami-
nation constitutive equations to the axisymmetric punch, in th
both are linear in the bending limit, cubic in the stretching lim
and a transition aroundW0'1. Significant difference lies in the
‘‘pull-off’’ event. The rectangular contact in the one-dimension
geometry reduces to zero, i.e., a line contact, in a stable man
while the axisymmetric contact in the two-dimensional geome
is finite and vanishes abruptly in an unstable manner. One in
esting implication is that of an elliptical punch with a conic e
centricity e, wheree50 corresponds to a circular punch ande
51 to a rectangular punch. Ase increases from 0 to 1, there ar
two consequences:~i! the ratio of contact area at pull-off to punc
area decreases from a maximum of (0.18)250.0324 to zero, and
~ii ! the degree of stability at pull-off increases.

When a rigid cylindrical punch is pulled away from an elas
half-space~@7#!, the adhesive contact circle remains identical
the punch dimension until critical pull-off force is reached. T
critical force and punch displacement at pull-off are identical
both fixed load and fixed grips configurations. This is in contr
with the punch-film model where a stable delamination and fin
contact radius at pull-off are expected under fixed grips.
Table 1 Comparison between various theories
MARCH 2002, Vol. 69 Õ 115
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When a solid sphere of radiusR is brought into adhesive con
tact with a rigid flat under zero external force, the contact radiu
found by the Johnson-Kendall-Roberts theory to bea
5@9pgR2(12n2)/4E#1/3 ~@4#!. Ignoring the weight of the sphere
a finite force is required for pull-off at a finite contact radius. He
the pull-off parameters for fixed load are different from that f
fixed grips~see Table 1!. Since the pull-off event is unstable, th
two adhering solids should theoretically jump into contact if th
were brought into close proximity, provided that an effective lon
range force is present in the gap. Our model of axisymme
punch-film system impliesa†'0.18a. A ‘‘jump into contact’’
event is also expected when a solid probe~cylindrical punch! is
brought to a distance less thanw0

† from a free hanging film. Our
previous study predicted the ‘‘jump’’ for a film of zero rigidity
~@12#! and the present work further extends the claim to include
film stiffness and thickness. The new model portrays a differ
mechanism for interaction and assemblies of colloidal thin-wa
capsules as compared to the conventional solid-solid adhe
theory ~@26#!.

It is worthwhile to remark several limitations of the prese
model:

~i! Buckling at film center. In a pure plate-like film, bucklin
at the center is expected for smallz. It is ignored here so that the
contact circle is not subject to any compression or shearing
thus elastic fracture mechanics is valid. If such contact stres
accounted for, then the ‘‘pull-off’’ parametersz†, w†, and W0

†

will deviate from the predicted values. Effects of buckling dimi
ish as film thickness and stiffness decrease.

~ii ! Neutral axis is hitherto taken to be along the midplane
film. The approximation is valid when (h/a)'0. In reality, only
the contact edge is fixed at the punch-film interface. Similar to
conventional 90 deg peel test, an alternating stress field ahea
the contact circle or crack front is expected due to elastic foun
tions ~@8#!. The effects due to a significant (h/a) ratio is discussed
by Zheng et al.@27#. When this is accounted for, afinite pull-off
force is expected in a pure plate under fixed load.

~iii ! The range of the attractive intermolecular force at the
terface is hitherto assumed to be negligible. If the force is lo
range in nature~e.g., Coulombic!, the thin annulus immediately
circumscribing the contact circle will experience a force at a d
tance. The film profile and the contact mechanics in turn will
altered correspondingly. The presence of such a ‘‘cohesive zo
is evident when two surfaces are in close proximity, e.g., crack
region ~@27#!.

6 Conclusion
An elastic solution for an axisymmetric punch in adhesive c

tact with a thin film was derived. A ‘‘pull-off’’ event similar to the
JKR theory was predicted. The new theory is important in m
eling adhesion between solid bodies and membranes. The
profile prediction serves as a guide to possible empirical meas
ments.
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Multimode Approach to Nonlinear
Supersonic Flutter of Imperfect
Circular Cylindrical Shells
The aeroelastic stability of simply supported, circular cylindrical shells in supersonic
is investigated by using both linear aerodynamics (first-order piston theory) and nonli
aerodynamics (third-order piston theory). Geometric nonlinearities, due to finite am
tude shell deformations, are considered by using the Donnell’s nonlinear shallow-
theory, and the effect of viscous structural damping is taken into account. The sys
discretized by Galerkin method and is investigated by using a model involving up
degrees-of-freedom, allowing for travelling-wave flutter around the shell and axisym
ric contraction of the shell. Asymmetric and axisymmetric geometric imperfection
circular cylindrical shells are taken into account. Numerical calculations are carried
for a very thin circular shell at fixed Mach number 3 tested at the NASA Ames Res
Center. Results show that the system loses stability by travelling-wave flutter aroun
shell through supercritical bifurcation. Nonsimple harmonic motion is observed for s
ciently high post-critical dynamic pressure. A very good agreement between theor
and existing experimental data has been found for the onset of flutter, flutter ampl
and frequency. Results show that onset of flutter is very sensible to small initial im
fections of the shells. The influence of pressure differential across the shell skin ha
been deeply investigated. The present study gives, for the first time, results in agre
with experimental data obtained at the NASA Ames Research Center more than
decades ago.@DOI: 10.1115/1.1435366#
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1 Introduction
The first reported occurrence of flutter instability on circu

cylindrical shells appears to have been on the V-2 rocket. S
that time, the study of the aeroelastic stability of cylindrical she
in axial flow is fundamental in the design of skin panels on ae
space vehicles, high-performance aircraft, and missiles. A fun
mental contribution to studies on this topic is due to the introd
tion of the piston theory by Ashley and Zartarian in 1956~@1#!.

Many interesting studies have investigated the shell stability
supersonic flow by using a linear shell model, and among oth
Dowell @2#, Olson and Fung@3#, Barr and Stearman@4#, and Ga-
napathi et al.@5# predicted the onset of flutter instability. Exper
ments~@3,6#! have indicated that the oscillation amplitude of flu
ter is of the same order of the shell thickness; therefore
nonlinear shell theory should be used in order to predict ac
rately the flutter amplitude. Extensive reviews of works
aeroelasticity of plates and shells were written by Dowell@7# and
Bismarck-Nasr@8#; a few nonlinear studies on shells and curv
panels were included. A specific review on nonlinear panel flu
was written by Mei et al.@9#, including five studies on curved
plates. Many experimental results on aeroelastic stability of cir
lar cylindrical shells in axial air-flow were collected in the pap
by Horn et al.@6#.

Only a few researchers used a nonlinear shell model to in
tigate the aeroelastic stability of cylindrical shells and curved p
els in axial supersonic and hypersonic flow. Librescu@10,11# stud-
ied the stability of shallow panels and finite-length circu
cylindrical shells by using Donnell’s nonlinear shallow-sh

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
2001; final revision, October 1, 2001. Associate Editor: D. A. Siginer. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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theory and a simple mode expansion without considering the c
panion mode~a second standing-wave mode described angul
by sin(nu), the orientation of which is atp/(2n) with respect to
the original one, described by cos(nu), n being the number of
nodal diameters! nor the interaction with the axisymmetric mode
The absence of the companion mode does not permit travell
wave flutter. Expansions neglecting the axisymmetric modes
not able to capture the correct nonlinear response of circular sh
and are only suitable for curved panels. The theory developed
Librescu@10,11# is also suitable for composite shells and nonli
ear terms in the supersonic flow pressure calculated by the th
order piston theory were included. No results on limit-cycle a
plitudes were given. Results obtained by Librescu can also
found in his book~@12#!.

Olson and Fung@13# modeled simply supported shells using
simplified form of Donnell’s nonlinear shallow-shell theory and
simple two-mode expansion without considering the compan
mode but including an axisymmetric term. In their study, the
personic flow was modeled by using the linear piston theory.
subsequent studies, Evensen and Olson@14,15# also considered
the companion mode, therefore employing a four-degree
freedom mode expansion. This expansion allows the study
travelling-wave flutter, where nodal lines are travelling circumf
entially around the shell; this phenomenon is similar to travell
waves predicted and measured for large-amplitude forced vi
tions of circular cylindrical shells. However, similarly to Even
en’s ~@16#! expansion for the flexural shell displacement, the
expansions are not moment-free at the ends of the shell, as
should be for classical simply supported shells, and the homo
neous solution for the stress function is neglected. Evensen
Olson @14,15# investigated periodic solutions by using the ha
monic balance method and solved the nonlinear algebraic e
tions only for some special cases. The results obtained are di
ent, from the qualitative point of view, with respect to those
Olson and Fung@13#; this is due to the different order of th
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perturbation approach used. Olsson@17# added to the problem the
effect of a particular temperature field on the material proper
by using a simple two-mode expansion.

Carter and Stearman@18# and Barr and Stearman@4,19# per-
formed a series of theoretical and experimental studies on
supersonic flutter of circular cylindrical shells by including ge
metric imperfections; however, the theoretical analysis was lin
They also introduced an improved linear piston theory to desc
the shell-flow interaction for Mach numbersM.1.6.

Amabili and Pellicano@20# studied the aeroelastic stability o
simply supported, circular cylindrical shells without imperfectio
in supersonic flow. Nonlinearities caused by the large-amplit
shell motion were considered by using Donnell’s nonline
shallow-shell theory, and the effect of viscous structural damp
was taken into account. Two different in-plane constraints w
applied to the shell edges:~i! zero axial force and~ii ! zero axial
displacement. The linear piston theory was applied to describe
fluid-structure interaction by using two different formulation
taking into account or neglecting the curvature correction te
The system was discretised by Galerkin method and was inv
gated by using a model involving seven degrees-of-freedom
lowing for travelling-wave flutter of the shell and shell axisym
metric contraction; modes with up to two streamwise half-wa
were considered. Results show that the system loses stabilit
travelling-wave flutter. A good agreement between theoretical
culations and experimental data reported in reference~@3#! was
found for flutter amplitudes.

Bolotin @21# treated the nonlinear flutter of curved plates in h
book on nonconservative problems. Dowell@22,23# investigated
the nonlinear flutter of curved plates of shallow curvature by us
a modified Donnell’s nonlinear shallow-shell theory. Both simp
supported and clamped plates were considered. The linear p
theory was used to describe the fluid-structure interaction.
modes, with different numbers of streamwise waves, were
cluded in the mode expansion. Limit-cycle amplitudes were c
culated and the effect of an internal pressurization was inve
gated. The effect of the curvature in the flow direction w
analyzed; results show that streamwise curvature is dramatic
destabilizing for the onset of flutter. Vol’mir and Medvedeva@24#
investigated the nonlinear flutter of circular cylindrical pane
with initial deflection and axial loads in supersonic flow. Th
used Donnell’s nonlinear shallow-shell theory to model the pa
dynamics and linear piston theory to model the fluid-struct
interaction. The numerical solution was obtained by using the
nite difference method. A more recent study on the influence
curvature on supersonic flutter of simply supported panels is
to Krause and Dinkler@25#; in this study the curvature of the pan
is in the direction of the flow. Krause and Dinkler used the fin
element method to discretize the structure taking into account
Kármán ~analogous to Donnell! geometric nonlinearities; imper
fections were used to describe the curvature of the panel.
third-order piston theory was used to model the fluid-struct
interaction. They found that the flutter boundary is much lower
largely curved panels than for flatter panels; they also predic
chaotic flutter motion.

Hypersonic flutter of simply supported, orthotropic curved pa
els was studied by Bein et al.@26# and Nydick et al.@27# by using
Donnell’s nonlinear shallow-shell theory, the Galerkin metho
and direct integration of the equations of motion. Expansion
flexural displacement involving modes up to eight longitudin
half-waves and one circumferential half-wave showed conv
gence of the solution. First-order piston theory, third-order pis
theory, Euler equations, and Navier-Stokes equations were us
describe the fluid-structure interaction with hypersonic flow; s
nificant differences were found by using different models. No
simple harmonic motion with modulations of amplitude was o
served for sufficiently high post-critical dynamic pressure.
118 Õ Vol. 69, MARCH 2002
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extensive experimental study on supersonic flutter of flat a
slightly curved panels at Mach number 2.81 was performed
Anderson@28#.

The studies developed in the past for the stability of circu
cylindrical shells in flow do not agree sufficiently well with ex
perimental results, as pointed out by Horn et al.@6#. In particular,
for subsonic Mach numbers, highly divergent and catastrop
instabilities have been measured experimentally for clamp
clamped copper shells excited by a fully developed turbulent fl
~@6#!. This kind of instability has recently been explained by Am
abili et al. by using a nonlinear shell model and potential flow
cases of both internal~@29#! and external and annular subson
flow ~@30#!. Numerical results obtained are in agreement with e
perimental data reported in reference~@31#!.

A review of studies on the nonlinear dynamics of shells, wh
are closely related to the present study, was recently written
Amabili and Paı¨doussis@32# and is avoided here for brevity.

The nonlinear stability of simply supported, circular cylindric
shells in supersonic axial flow is investigated in the present st
by using an improved structural and aerodynamic model with
spect to the analysis~@20#! recently developed by the same autho
of the present paper. In particular, both linear aerodynamics~first-
order piston theory! and nonlinear aerodynamics~third-order pis-
ton theory! are used. Geometric nonlinearities, due to finite a
plitude shell deformations, are considered by using Donne
nonlinear shallow-shell theory, and the effect of viscous structu
damping is taken into account. Asymmetric and axisymme
geometric imperfections of the circular cylindrical shells a
static pressure are taken into account. The system is discretize
Galerkin projections and is investigated by using a model invo
ing up to 22 degrees-of-freedom, allowing for travelling-wa
flutter of the shell and shell axisymmetric contraction.

Numerical calculations are performed for a copper circu
shell, fabricated by electroplating and tested in the 837 ft super-
sonic wind tunnel, at fixed Mach number 3, at the NASA Am
Research Center~@3,13#! in 1964. During the experiments, it wa
observed that the pertinent streamwise wavelengths of interes
very large with respect to the boundary layer thickness, sugges
that the influence of the boundary layer is probably negligible.
this study, a program for the continuation of solution of nonline
differential equations is used to obtain the bifurcation diagram
Moreover, direct integration of the equations of motion is used
comparison and investigation of amplitude modulated mot
arising by a Neimark-Sacker bifurcation of the periodic orbit.

2 Equation of Motion, Boundary Conditions, and
Mode Expansion

A cylindrical coordinate system (O;x,r ,u) is chosen, with the
origin O placed at the center of one end of the shell. The displa
ments of points in the middle surface of the shell are denoted bu,
v, andw, in the axial, circumferential, and radial directions, r
spectively;w is taken positive inwards. Initial imperfections of th
circular cylindrical shell associated with zero initial tension a
denoted by the radial displacementw0 ; only radial initial imper-
fections are considered. By using Donnell’s nonlinear shallo
shell theory, the equation of motion for finite-amplitude transve
dynamic deformation of a thin, imperfect, circular cylindric
shell is given by~@33–35#!

D¹4w1chẇ1rhẅ5p2pm1
1

R

]2F

]x2 1
1

R2 F]2F

]u2 S ]2w

]x2 1
]2w0

]x2 D
22

]2F

]x]u S ]2w

]x]u
1

]2w0

]x]u D
1

]2F

]x2 S ]2w

]u2 1
]2w0

]u2 D G , (1)
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whereD5Eh3/@12(12n2)# is the flexural rigidity,E the Young’s
modulus,n the Poisson ratio,h the shell thickness,R the mean
shell radius,r the mass density of the shell,c the damping param-
eter,p the radial aerodynamic pressure applied to the surfac
the shell as a consequence of the external supersonic flow~posi-
tive inward!, and pm is the pressure differential across the sh
skin ~positive outward!. The overdot denotes a time derivative a
F is the in-plane Airy stress function. HereF is given by the
following compatibility equation~@33–35#!:

1

Eh
¹4F52

1

R

]2w

]x2 1
1

R2 F S ]2w

]x]u D 2

12
]2w

]x]u

]2w0

]x]u
2S ]2w

]x2 1
]2w0

]x2 D ]2w

]u2 2
]2w

]x2

]2w0

]u2 G .
(2)

In Eqs. ~1! and ~2!, the biharmonic operator is defined as¹4

5@]2/]x21]2/(R2]u2)#2. Donnell’s nonlinear shallow-shel
equations are accurate only for modes of large numbern of cir-
cumferential waves; specifically, 1/n2!1 must be satisfied, so tha
n>5 is required in order to have fairly good accuracy. Donne
nonlinear shallow-shell equations are obtained by neglecting
in-plane inertia, transverse shear deformation and rotary ine
giving accurate results only for very thin shells, that ish!R. In
plane displacements are infinitesimal, i.e.,uuu!h, unu!h,
whereasw is of the same order of the shell thickness. The p
dominant nonlinear terms are retained but other secondary eff
such as the nonlinearities in curvature strains, have been
glected; in particular, the curvature changes are expressed by
ear functions ofw only. These approximations give good accura
to study flutter problems.

The forces per unit length in the axial and circumferential
rections, as well as the shear force, are given by~@36#!

Nx5
1

R2

]2F

]u2 , Nu5
]2F

]x2 , Nxu52
1

R

]2F

]x]u
. (3)

The strain-displacement relations are

~12n2!
Nx

Eh
52

nw

R
1

1

2 S ]w

]x D 2

1
]w

]x

]w0

]x
1

n

2 S ]w

R]u D 2

1n
]w

R]u

]w0

R]u
1

]u

]x
1

n

R

]v
]u

, (4)

~12n2!
Nu

Eh
52

w

R
1

n

2 S ]w

]x D 2

1n
]w

]x

]w0

]x
1

1

2 S ]w

R]u D 2

1
]w

R]u

]w0

R]u
1n

]u

]x
1

1

R

]v
]u

, (5)

~12n2!
Nxu

Eh
52~12n!F 1

R

]w

]x

]w

]u
1

1

R

]w

]x

]w0

]u
1

1

R

]w0

]x

]w

]u

1
1

R

]u

]u
1

]v
]xG . (6)

In this study, attention is focused on a finite, simply suppor
~with zero axial load!, circumferentially closed circular cylindrica
shell of lengthL. The following boundary conditions are impose

w5w050, (7a)

Mx52D$~]2w/]x2!1n@]2w/~R2]u2!#%50 at x50,L,
(7b)

and

]2w0 /]x250 at x50,L. (7c)

Nx50 at x50,L (8a)
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and

v50 at x50,L, (8b)

whereMx is the bending moment per unit length; moreover,u, v,
andw must be continuous inu.

The radial displacementw is expanded by using the linear she
eigenmodes for zero flow as the base and can be written as
lows:

w~x,u,t !5 (
m51

M1

(
n51

N

@Am,n~ t !cos~nu!1Bm,n~ t !sin~nu!#sin~lmx!

1 (
m51

M2

Am,0~ t !sin~lmx!, (9a)

wheren is the number of circumferential waves,m is the number
of longitudinal half-waves,lm5mp/L andt is the time;Am,n(t),
Bm,n(t), andAm,0(t) are the modal coordinates that are unknow
functions oft ~Am,0 is related to axisymmetric modes!. The inte-
gersN, M1 , andM2 , which give the number of modes used in th
Galerkin expansion, must be selected with care in order to h
the required accuracy and acceptable dimension of the nonli
problem. In the numerical calculations, different expansions h
been used and compared. The maximum number of degree
freedom used in the numerical calculations for Eq.~9! is 22. It is
observed, for symmetry reasons, that the nonlinear interac
among linear modes of the chosen base involves only the as
metric modes (n.0) having a givenn value, the asymmetric
modes having a multiple eliminatek3n of circumferential waves,
wherek is an integer, and axisymmetric modes (n50). For the
latter case, only modes with an oddm value of longitudinal half-
waves have been considered because they are the most impo
as previously observed in other studies on nonlinear vibration
shells~@29,37,38#!. Asymmetric modes having up to six longitu
dinal half-waves (M156) and modes havingn and 23n circum-
ferential waves have been considered in the numerical calc
tions. Axisymmetric modes play an important role in nonline
oscillations; moreover, they are fundamental to study the effec
pressurization. This is the reason why they are included in
present model; in all the numerical calculationsM2511 is used
~only oddm values!. The form of the radial displacement used
the numerical calculation is

w~x,u,t !5 (
m51

4 or 6

(
k51

1 or 2

@Am,kn~ t !cos~knu!

1Bm,kn~ t !sin~knu!#sin~lmx!

1 (
m51

6

A~2m21!,0~ t !sin~l~2m21!x!. (9b)

Smaller expansions have been used for comparison purpose
The presence of couples of modes having the same shape

different angular orientations, the first one described by cos(nu)
and the other by sin(nu), in the periodic response of the shell lea
to the appearance of travelling-wave flutter around the shel
angular direction. This phenomenon is related to the axial sym
try of the system. The travelling-wave flutter represents a fun
mental differencevis-à-vis the linear approach to shell flutter.

The initial radial imperfectionw0 is expanded in the same form
of w, i.e., in a double Fourier series satisfying the boundary c
ditions ~7a,c! at the shell edges

w0~x,u!5 (
m51

M̃1

(
n51

Ñ

@Ãm,n cos~nu!1B̃m,n sin~nu!#sin~lmx!

1 (
m51

M̃2

Ãm,0 sin~lmx!, (10)
MARCH 2002, Vol. 69 Õ 119



120 Õ Vol. 6
Fig. 1 Amplitude of oscillatory solutions versus the freestream static pressure; nÄ23, linear pis-
ton theory. , stable branches; ----, unstable branches. „a… Maximum amplitude of the first longi-
tudinal mode A 1,n„t …Õh ; „b… maximum amplitude of the first longitudinal mode B 1,n„t …Õh ; „c… maxi-
mum amplitude of the second longitudinal mode A 2,n„t …Õh ; „d… maximum amplitude of the second
longitudinal mode B 2,n„t …Õh ; „e… maximum amplitude of the third longitudinal mode A 3,n„t …Õh ; „f …
maximum amplitude of the third longitudinal mode B 3,n„t …Õh ; „g… maximum amplitude of the fourth
longitudinal mode A 4,n„t …Õh ; „h… maximum amplitude of the fourth longitudinal mode B 4,n„t …Õh ; „i…
maximum amplitude of the first mode with 2 n circumferential waves A 1,2n„t …Õh ; „j… maximum ampli-
tude of the first axisymmetric mode A 1,0„t …Õh .
9, MARCH 2002 Transactions of the ASME
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Fig. 2 Time histories of the shell for p `Ä3800 Pa; nÄ23, linear piston theory. „a… Am-
plitude of the first longitudinal mode A 1,n„t …Õh ; „b… amplitude of the first longitudinal
mode B 1,n„t …Õh ; „c… amplitude of the second longitudinal mode A 2,n„t …Õh ; „d… amplitude
of the second longitudinal mode B 2,n„t …Õh ; „e… amplitude of the first longitudinal mode
with 2 n circumferential waves A 1,2n„t …Õh ; „f … amplitude of the axisymmetric mode
A 1,0„t …Õh .
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whereÃm,n , B̃m,n , andÃm,0 are the modal amplitudes of impe
fections; Ñ, M̃1 , and M̃2 are integers indicating the number o
terms in the expansion. Seven terms in the expansion of im
fections are considered in the numerical calculations:~i! asymmet-
ric imperfection having the same shape of the fluttering mode w
one (Ã1,n ,B̃1,n), two (Ã2,n ,B̃2,n), and three (Ã3,n ,B̃3,n) longitudi-
nal half-waves;~ii ! axisymmetric imperfection with one longitu
dinal half-wave (Ã1,0). Additional terms can be inserted; thos
with 2n circumferential waves can be significant.

3 Stress Function and Solution

The expansion used for the radial displacementw satisfies iden-
tically the boundary conditions given by Eqs.~7a, b!; moreover, it
Mechanics
-
f
er-

ith

e

satisfies exactly the continuity of the circumferential displacem
v,

E
0

2p ]v
]u

du5E
0

2p F 1

Eh S ]2F

]x22n
]2F

R2]u2D1
w

R
2

1

2 S ]w

R]u D 2

2
]w

R]u

]w0

R]uGdu50, (11)

as it has been verified after calculation of the stress functioF
from Eq. ~2!.

The boundary conditions for the in-plane displacements, E
~8!, give very complex expressions when transformed into eq
tions involvingw. Therefore they are modified into simpler inte
gral expressions that satisfy Eqs.~8! on the average~@36#!. Spe-
cifically, the following conditions are imposed:
MARCH 2002, Vol. 69 Õ 121
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NxRdu50, at x50,L (12)

E
0

2pE
0

L

NxudxRdu50. (13)

Equation~12! ensures a zero axial forceNx on the average atx
50,L; Eq. ~13! is satisfied whenv50 on the average atx50,L
andu is continuous inu on the average. Substitution of Eqs.~8!
by Eqs.~12! and ~13! simplifies computations, although it intro
duces an approximation~it can easily be shown that the bounda
conditions are exactly satisfied atn discrete points, wheren is the
number of circumferential waves!.

Fig. 3 Flutter response of the shell for p `Ä7000 Pa; nÄ23,
linear piston theory. „a… Time history of the first longitudinal
mode A 1,n„t …Õh ; „b… phase-plane plot of the first longitudinal
mode A 1,n„t …Õh ; „c… spectrum of the first longitudinal mode
A 1,n„t …Õh .
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When the expansions ofw andw0 , Eqs.~9! and~10!, are sub-
stituted in the right-hand side of Eq.~2!, a partial differential
equation for the stress functionF is obtained, the solution of
which may be written as

F5Fh1Fp , (14)

whereFh is the homogeneous andFp is the particular solution.
The particular solution is given by

Fp5 (
m51

2M

(
n51

2N

~Fmn1 sinmh sinnu1Fmn2 sinmh cosnu

1Fmn3 cosmh sinnu1Fmn4 cosmh cosnu!

1(
n51

2N

~F0n3 sinnu1Fmn4 cosnu!

1 (
m51

2M

~Fm02 sinmh1Fm04 cosmh!, (15)

whereN is the same as in Eq.~9a!, M is the maximum ofM1 and
M2 , h5px/L and the functions of timeFmn j , j 51, . . . ,4,have
a long expression not reported here; they have been obtaine
using theMathematicacomputer program~@39#! for symbolic ma-
nipulations. The homogeneous solution may be assumed to
the form ~@29#!

Fh5
1

2
N̄xR

2u21
1

2
x2H N̄u2

1

2pRL E0

LE
0

2pF]2Fp

]x2 GRdudxJ
2N̄xuxRu, (16)

whereN̄x , N̄u , and N̄xu are the average in-plane force~per unit
length! resultants, as a consequence of the in-plane constraint
the average, defined as

N̄#5
1

2pL E0

2pE
0

L

N#dxdu, (17)

where the symbol # must be replaced byx, u, andxu. Boundary
conditions ~12, 13! allow us to express the in-plane restrai
stressesN̄x , N̄u , and N̄xu , see Eqs.~4!–~6!, in terms ofw, w0 ,
and their derivatives. Simple calculations give

N̄x50, (18a)

N̄u5
Eh

2pR H 22(
m51

M2 Am,0~ t !

m
@12~21!m#1

p

4R (
n51

N̂

(
m51

M̂

n2

3@Am,n
2 ~ t !1Bm,n

2 ~ t !12Am,n~ t !Ãm,n~ t !

12Bm,n~ t !B̃m,n~ t !#J , (18b)

N̄xu50, (18c)

whereN̂ is the maximum ofN andÑ, andM̂ is the maximum of
M1 andM̃1 . Equation~16! is chosen in order to satisfy the bound
ary conditions imposed. Moreover, it satisfies Eqs.~3! on the av-
erage as a consequence of~i! the contribution ofFp to N̄u being
(2pRL)21*0

t *0
2p@]2Fp /]x2#Rdudx, and~ii ! contributions ofFp

to N̄x andN̄x0 being zero.
By use of the Galerkin method, up to 22 second-order, ordin

coupled nonlinear differential equations are obtained for the v
ablesAm,n(t), Bm,n(t), and Am,0(t), by successively weighting
the single original Eq.~1! with the functions that describe th
shape of the modes retained in Eq.~9b!. These equations hav
very long expressions containing quadratic and cubic nonlin
Transactions of the ASME



Journal of Applied Mec
Fig. 4 Nondimensional flutter amplitude versus nondimensional flutter fre-
quency; v1,nÄ2pÃ226.3 rad Õs. , stable branches; ----, unstable branches.
„a… Amplitude of the first longitudinal mode with n circumferential waves; „b…
amplitude of the first longitudinal mode with 2 n circumferential waves.
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terms. The Galerkin projection of the equation of motion~1!, in-
cluding the pressure load, has been performed by using theMath-
ematicacomputer software~@39#!.

4 Linear and Third-Order Piston Theory
The fluid-structure interaction used in the present study is ba

on the piston theory~@1#!. As discussed in the Introduction, th
configuration investigated is related to experiments performed
Olson and Fung@3,13#, where the pertinent streamwise wav
lengths of interest are very large with respect to the bound
layer thickness~see Fig. 5 in@3#!, suggesting that the influence o
the boundary layer is probably negligible~@13#!.

According to piston theory~@1#!, the radial aerodynamic pres
sure p applied to the surface of the shell can be obtained
analogy with the instantaneous isentropic pressure on the face
piston moving with velocityZ into a perfect gas which is confine
in a one-dimensional channel; this pressure is given by

p5p`S 11
g21

2

Z

a`
D 2g/~g21!

, (19)

where g is the adiabatic exponent,p` is the freestream static
pressure,V` is the freestream velocity, anda` is the freestream
speed of sound. In the analogy, the piston velocityZ is replaced by
the Z5V`](w1w0)/]x1]w/]t in order to obtain the radia
hanics
sed
e
by
-

ary
f

-
by
of a

aerodynamic pressurep applied to the surface of the shell as
consequence of the external supersonic flow. Equation~19! can be
expanded into Taylor series for the variableZ/a` close to zero;
the third-order expansion, neglecting higher-order terms, gi
~@1,9,10,12,27#!

p52gp`H FM
]~w1w0!

]x
1

1

a`

]w

]t G1
g11

4 FM
]~w1w0!

]x

1
1

a`

]w

]t G2

1
g11

12 FM
]~w1w0!

]x
1

1

a`

]w

]t G3J . (20a)

The linear termsp1 in Eq. ~20a! can be substituted with a mor
accurate expression obtained by linearized potential flow the
~@4,40#!

p152
gp`M2

~M221!1/2 H ]~w1w0!

]x
1

1

Ma`
FM222

M221G ]w

]t

2
w1w0

2~M221!1/2RJ . (20b)

In Eq. (20b), the last term is the curvature correction term and
neglected in some studies of shell stability based on the pis
theory. Except for the curvature correction term, Eq. (20b) re-
MARCH 2002, Vol. 69 Õ 123



Table 1 Critical freestream static pressure giving onset of flutter calculated for different expansions of the radial displacement w ,
Eq. „9a…; nÄ23, p mÄ3452 NÕm2. The result for five modes has been taken from Amabili and Pellicano †20‡. Case „i… with 22 modes:
expansion given in Eq. „9b … with the options of a maximum of four longitudinal half-waves and kÄ1,2. Case „ii … with ten modes:
elimination from case „i… of all the modes having sin (knu) and kÄ1 only. Case „iii … with nine modes: elimination from case „ii … of
the axisymmetric mode with 11 longitudinal half-waves. Case „iv … with five modes: expansion retaining only A 1,n , A 2,n , A 1,0 , A 3,0 ,
A 5,0 .

Case~i! Case~ii ! Case~iii ! Case~iv!

Expansion~number of modes! 22 22 10 9 5
Piston theory 3rd order linear linear linear linear
Critical p` ~Pa! 3614.4 3614.4 3614.4 3746.7 4077.7~@20#!
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duces to the linear part of Eq. (20a) for sufficiently high Mach
numbers; Eq. (20b) is more accurate for low supersonic spe
and can be used forM.1.6.

In the present study, Eq. (20b) is used for linear aerodynamic
~referred as linear piston theory in Section 5! and Eq. (20a), with
the linear terms modified according to Eq.~20b!, for nonlinear
aerodynamics~third-order piston theory!.

5 Numerical Results
Numerical results have been obtained for a case experimen

studied by Olson and Fung@3# and theoretically investigated b
Olson and Fung@13#, Evensen and Olson@14,15#, Carter and
Stearman@18#, Barr and Stearman@19#, and Amabili and Pelli-
cano@20#. The shell and the airflow have the following charact
istics: R50.2032 m, L50.39116 m, R/h52000, E5110.32
3109 Pa, r58905.37 kg/m3, n50.35, g51.4, a`5213.36 m/s
and M53; the freestream stagnation temperature is 48.9°C
structural modal damping coefficientz1,n50.0005, which is com-
patible with the test shell~@14,15#!, is assumed; for other mode
zx5z1,nv1,n /vx . The test shell is extremely thin, fabricated wi
copper by electroplating, and was tested in the 837 ft supersonic
wind tunnel at the NASA Ames Research Center. The experim
tal boundary conditions at the shell edges were quite comp
~@3#!. In particular, the test shell was soldered to two copper
rings, mounted over O-ring seals to allow thermal expansion
the present calculations they have been simulated with sim
supported edges; actual boundary conditions were between si
supported and clamped edges.

5.1 Shell Without Geometric Imperfections. In this sub-
section, the shell is considered without geometric imperfectio
Initially calculations have been performed for a numbern523
circumferential waves and pressure differential across the s
skin pm53447.5 N/m2, in order to allow comparison with previ
ous studies~@13–15,20#!. The effect ofpm has been taken into
account by using the nonlinear equations, without the lineariza
used in previous studies~@13–15,18–20#!; therefore the static axi-
symmetric deformation due to pressurization has been taken
account. The freestream static pressurep` has been used as bifur
cation parameter instead of the Mach numberM. In fact, experi-
mental data available for comparison from the supersonic w
tunnel tests~@3,19#! were collected varyingp` and keepingM
constant. As a consequence that the flight velocityU5Ma` and
that a`5Agp` /r`, the flight velocityU can be easily related to
the freestream static pressurep` .

Solutions of the nonlinear equations of motion have been
tained numerically by using~i! theAutocomputer program~@41#!
for continuation of the solution and bifurcation of ordinary diffe
ential equations, based on a collocation method, and~ii ! direct
integration of the equations of motion. TheAuto computer pro-
gram is not able to detect surfaces coming out from a bifurca
point, but it can detect branches. As a consequence that, fo
axisymmetry, the system does not possess a preferential an
coordinateu to locate the deformation, in the present case surfa
come out from bifurcation points. In order to useAuto, a bifurca-
tion analysis was performed introducing a small perturbation
124 Õ Vol. 69, MARCH 2002
d

tally

r-

. A

s
h

en-
lex
nd
In
ply
ply

ns.

hell

ion

into
-

ind

ob-

r-

ion
the
ular

ces

to

the linear part of the system. This approach is analogous to ha
a very small difference in the stiffness of the system for the cou
of modes described by the generalized coordinatesA1,n andB1,n .
This perturbation allows normal bifurcation analysis, as li
branches now emerge from bifurcation points instead of surfa
A perturbation of 0.2 percent to the linear frequency of the mo
corresponding toB1,n has been used in the present case, so
differences with respect to the actual systems are almost n
gible. Direct integration of the equations of motion by usin
Gear’s BDF method~routine DIVPAG of IMSL! has also been
performed to check the results and obtain the time behavior.
ams Gear algorithm has been used due to the high dimensio
the dynamical system. Indeed, when a high-dimensional ph
space is analyzed, the problem can present stiff characteris
due to the presence of different time scales in the response
simulations with adaptive step-size Runge Kutta methods, sp
ous nonstationary and divergent motions, incoherent with AU
solutions, were obtained. Therefore the Adams Gear method,
signed for stiff equations, was used.

The bifurcation curves for all the most important modal coo
dinates versus the freestream static pressurep` are shown in Fig.
1 for the aerodynamic pressure given by linear piston theory
this case, 22 modes have been used. The expansion is the o
Eq. (9b) with the options of a maximum of four longitudina
half-waves andk51,2.

In Fig. 1 the curves correspond to the flutter amplitudes of
shell ~excluding branch 1 that is relative to the trivial equilibriu
position!. Results show that the perfect shell loses stability

Fig. 5 Amplitude of oscillatory solutions versus the
freestream static pressure; nÄ23. , third-order piston
theory; ----, linear piston theory.
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Fig. 6 Critical freestream static pressure versus the pressure differential
across the shell skin p m for three different numbers of circumferential
waves: ----, nÄ22; , nÄ23, "-"-"-", nÄ24
f

t
g

li-
inal
r.

all
ce,
p`53614 Pa through Hopf bifurcation. Branches 2 and 3 cor
spond to standing-wave flutter that loses stability very so
through bifurcation. Branch 4, which is the attractive solutio
represents a travelling-wave flutter around the shell circum
ence, as can be shown by observing the time histories of
system obtained by direct integration of the equations of mo
for p`53800 Pa, reported in Fig. 2. It can be observed in Fi
2~a, b! that the phase shift betweenA1,n(t) and B1,n(t) is q2
2q15p/2; the same phase shift is observed in Figs. 2~c, d! for
anics
re-
on
n,
er-
the
ion
s.

modes having two longitudinal half-waves. Moreover, the amp
tude of the couple of modes with the same number of longitud
wave numberm is the same, giving pure travelling-wave flutte
It is to be noted that, excluding a very small range ofp` after
the onset of instability due to the perturbation introduced,
the stable flutter is a travelling wave around the circumferen
as observed in the experiments by Olson and Fung@3# and pre-
dicted by Evensen and Olson@14,15# and Amabili and Pellicano
@20#. Figures 2~e, f ! show that generalized coordinatesA1,2n and
Fig. 7 Critical freestream static pressure versus the pressure differential
across the shell skin p m . , theoretical results for imperfect shell, B̃ 1,24

Ä0.18h , Ã 3,24Ä0.0966h , Ã 1,0Ä2.46h , and nÄ24; the gray area delimited by
"-"-"-" represents the experimental data „†19‡….
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Fig. 8 Amplitude of oscillatory solutions versus the
freestream static pressure; nÄ24, p mÄ5000 Pa; imperfect shell
„B̃ 1,24Ä0.18h ,Ã 3,24Ä0.0966h ,Ã 1,0Ä2.46h …, linear piston theory.

, stable branches; ----, unstable branches. „a… Maximum
amplitude of the first longitudinal mode A 1,n„t …Õh ; „b… maximum
amplitude of the first longitudinal mode B 1,n„t …Õh ; „c… maximum
amplitude of the second longitudinal mode A 2,n„t …Õh ; „d… maxi-
mum amplitude of the second longitudinal mode B 2,n„t …Õh .
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A1,0 have a flutter frequency which is twice the one shown in Fi
2(a–d). A similar phenomenon has been observed for nonlin
harmonic vibrations of shells~@37,38#!.

Branch 4 in Fig. 1 loses stability forp`55600 Pa through a
Neimark-Sacker~torus! bifurcation ~@42#! and regains stability at
p`515190 Pa through a second Neimark-Sacker bifurcation
the range comprised between these two values, there is a q
periodic flutter oscillation characterized by amplitude modu
tions, as shown in Fig. 3 forp`57000 Pa. For this value ofp` ,
amplitude modulations are particularly large when compared w
those observed for different values ofp` . Figures 3~a! and 3~b!
show the amplitude modulation and the trajectory in the ph
space; the trajectory fills completely a portion of the plane. T
means that the system evolves on a two-dimensional torus, w
the trajectory is not closed, giving rise to a quasi-periodic or
This happens when the frequencies of oscillations are in an
tional ratio. The effect on the spectrum of the shell oscillation i
splitting of the flutter frequency into several closely and equa
spaced frequencies~peaks!. This feature can be observed on th
spectrum, Fig. 3~c!, where two principal peaks, very close to ea
other, are visible. Amplitude-modulated flutter was also obser
in experiments, see Fig. 6~c! of reference~@3#!. It can also be
observed in Fig. 1 that branch 4 presents a curious curve forp`

comprised between 11,100 and 11,500 Pa. Branches 5, 6, a
are always unstable; moreover, branches 5 and 7 present s
subcritical bifurcations and are associated with modes withn
circumferential waves, see Fig. 1~i!. In particular, branch 7 could
be very dangerous because highly divergent. However, it is c
pletely unstable and not attractive, i.e., a repellor. The presenc
multiple unstable orbits makes the phase trajectory very comp

The flutter frequency, nondimensionalized with respect to
natural frequencyv1,n (n523) of the unpressurized shell, i
shown in Fig. 4. Results show that the flutter frequency of bra
4, the most important one, is almost constant; similar result is a
found for branches 2 and 3.

Table 1 shows the effect of different expansions of the rad
displacementw on the critical freestream static pressure asso
ated with onset of flutter. In particular, the effect of modes w
2n circumferential waves and modes with angular functi
sin(nu) is negligible on the onset of flutter. However, the cont
bution of the latter ones on the nonlinear flutter response is f
damental, as previously discussed. Several qualitative and qu
tative differences have been found between the present results
those obtained by Amabili and Pellicano@20# for the same case
with a seven-degree-of-freedom model. The flutter observed
reference~@20#! was always a simple-harmonic oscillation o
smaller amplitude; the difference is mainly due to the differe
number of longitudinal modes included in the expansions ofw and
to the different way of considering pressurization. Table 1 giv
the quantitative difference between the onset of flutter predicte
reference~@20#! and the one calculated in the present study.

Results obtained by using the third-order piston theory are
most coincident with those obtained with the linear piston the
in the present case. In Fig. 5, a comparison of the results obta
by using the two theories is shown with only a zoom of the bifu
cation diagram~see Fig. 1! in order to appreciate the small differ
ence.

Figure 6 shows the critical freestream static pressure assoc
with onset of flutter versus the pressure differential across
shell skin pm for three numbers of circumferential waves:n
522, 23, 24. Figure 6 shows that the onset of flutter is actua
observed forn524; however, the difference with respect ton
523 is very small. The effect of pressurization of the shell ha
small stabilizing effect. The last result disagrees with experim
tal data obtained by Olson and Fung@3,19#. The introduction of
Transactions of the ASME
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Fig. 9 Flutter response of the shell for p `Ä6500 Pa; nÄ24, p mÄ5000 Pa; imperfect shell
„B̃ 1,24Ä0.18h ,Ã 3,24Ä0.0966h ,Ã 1,0Ä2.46h …, linear piston theory. „a… Time history of the first
longitudinal mode A 1,n„t …Õh ; „b… experimental time history „†3‡…; „c… spectrum of the first
longitudinal mode A 1,n„t …Õh ; „d… experimental spectrum „†3‡….
e
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geometric imperfections is needed to better reproduce experim
tal results.

It can be observed that the shell used in calculations ha
softening nonlinearity~@20#!. However, as a consequence that
the onset of flutter there is a coalescence of the natural frequ
of two shell modes with different number of longitudinal ha
waves, supercritical bifurcations arise for the stable branches
and 4. In fact, recently it has been shown~@43#! that the passage
d Mechanics
en-

s a
at
ncy

f-
, 3,

from softening to hardening nonlinearity of a shell usually ha
pens in correspondence of internal resonances between mod
the shells, e.g. when two modes have an integer ratio~one, two, or
three! between their natural frequency.

5.2 Shell With Geometric Imperfections. Results show
that onset of flutter is very sensitive to small initial imperfection
In particular, asymmetric imperfections are ironed out by t
MARCH 2002, Vol. 69 Õ 127
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pressurization of the shell, whereas the axisymmetric ones
not. This is in agreement with what predicted for buckling
circular shells by Hutchinson@44#. However, asymmetric imper
fections change more significantly than axisymmetric modes
natural frequency of the first asymmetric modes, which are
most important to predict flutter boundary.

Calculations have been performed with different combinatio
of asymmetric and axisymmetric imperfections. However,
sake of brevity, all the results reported in this section are rela
the shell having the following geometric imperfections:B̃1,24

50.18h, Ã3,2450.0966h, and Ã1,052.46h; all the other coeffi-
cients in Eq.~10! are zero. Considering thath is about 0.1 mm, the
asymmetric imperfections are almost imperceptible and the
symmetric imperfection, which plays a much smaller role, is co
patible with the soldered connection of the shell to end rin
giving deflection inwards. Calculations have been performed
linear piston theory and 18 modes have been used in the ex
sion ofw. The expansion is the one in Eq.~9b! with the option of
a maximum of six longitudinal half-waves andk51.

The solution of the linear eigenvalue problem for the shell wi
out flow shows that imperfections having an odd number of l
gitudinal half-waves slightly reduce the natural frequencies
modes with an odd number of longitudinal half-waves and
crease more substantially the frequency of modes with an e
number of longitudinal half-waves. Moreover, imperfections ha
ing an angular orientation~e.g., described by cos(nu)! have a sig-
nificant effect only on the same orientation.

Figure 7 shows the flutter boundary versus the pressure di
ential across the shell skin for the imperfect shell. Experimen
results obtained at the NASA Ames Research Center in 1
~@3,19#! are also shown for comparison. The computed results
in satisfactory agreement with the experiments. In particular,
onset of flutter initially increases quickly with the pressure diffe
ential pm up to a maximum. This part of the curve is associa
with a Hopf bifurcation arising from merging of the frequencies
modes with two and three longitudinal half-waves; these mo
are the first to merge, i.e., to give flutter, for the imperfect sh
The second part of the curve, on the right of the maximum
associated with a Hopf bifurcation arising from merging of t
frequencies of modes with one and two longitudinal half-wav
for increased pressurepm these modes are the first to merge,
has been obtained for the perfect shell.

It can be observed that the maximum of the computed curv
Fig. 7 is moved on the left with respect to experiments. Actua
imperfections should be studied on a statistical basis since da
the specimens used in the experiments are not available. M
over, imperfections having different numbers of circumferen
waves with respect to the fluttering mode should be conside
However, the imperfections introduced reproduce the experim
tal results of Olson and Fung who observed that~@3#!: ~i! small
internal pressurization was very stabilizing;~ii ! moderate pressur
ization reduced stability to the unpressurized level;~iii ! high in-
ternal pressure completely stabilized the shell. In particular,
servation ~ii ! was very surprising at that time. This observ
behavior is well explained by asymmetric imperfections that
ironed out by moderate pressurization of the shell.

In Fig. 8 the curves correspond to maximum flutter amplitud
of the shell ~excluding branch 1! for the same imperfect she
studied in Fig. 7 forpm55000 Pa; only the generalized coord
natesA1,n , B1,n , A2,n , andB2,n are represented for brevity. With
respect to Fig. 1, all branches~excluding branch 1! correspond to
travelling-wave flutter. The shell loses stability by Hopf bifurc
tion at p`53067 Pa; a second Hopf bifurcation arises atp`
53176 Pa. The increased pressurizationpm and the presence o
imperfections reduce the flutter amplitudes with respect to Fig
The flutter amplitudes obtained in Fig. 8 are in excellent agr
ment with experimental results described by Olson and Fung@3#
where a flutter amplitude of about 0.5h rms is reported atx/L
50.72, corresponding to about 0.7h for simple-harmonic oscilla-
128 Õ Vol. 69, MARCH 2002
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tions. The attractive solution is branch 2, and corresponds
travelling-wave flutter with and without amplitude modulation
according to the stability of the simple periodic oscillation ind
cated in Fig. 8. In particular, for 4662,p`,8373 Pa, i.e., be-
tween two Neimark-Sacker bifurcations, for 8418,p`,9598 Pa
and for p`.9783 ~up to the upper limit 10,000 Pa computed!
travelling-wave flutter with amplitude modulations arises. T
flutter frequency has only small variations, similar to Fig.
around 677 Hz; this value is also in very good agreement w
experimental results, as shown in Fig. 7 in reference~@3#!.

A comparison between theoretical and experimental results
flutter with amplitude modulations is given in Fig. 9. The expe
mental results are taken from reference~@3#! where no information
is given on the values ofpm andp` for which these experimenta
data were recorded. However, even if it is not possible to say
these theoretical and experimental results correspond exact
the same conditions, it was observed that the flutter freque
does not change significantly withpm andp` ; Fig. 9 shows that
calculations and experiments are in good agreement.

It seems to us that a numerical model capable of reproduc
quantitatively the experimental results obtained at the NA
Ames Research Center in 1964 has been developed for the
time in the present paper.

6 Conclusions
Results show that the prediction of the onset of flutter of pr

surized circular shells requires knowledge of the amount of a
symmetric imperfections. In fact, asymmetric imperfections
ironed out by the pressure, whereas the axisymmetric ones are

Numerical results have been obtained at Mach number 3. In
case, the results obtained by using the linear and the third-o
piston theories are almost identical.

The predicted nature of flutter was a travelling-wave around
circumference and the amplitude of the order of the shell thi
ness, giving mild flutter, in agreement with existing experimen
results. In particular, both harmonic and amplitude-modula
flutter has been predicted, in agreement with experimental d
flutter changes from harmonic to amplitude-modulated throu
Neimark-Sacker~torus! bifurcations. It is very important to ob-
serve that the nature of the Hopf bifurcation is supercritical for
the calculations performed for Mach numberM53. This is also in
agreement with the experiments available that show mild su
sonic flutter with amplitude gradually increasing with th
freestream static pressure~i.e., with the flight speed!. Differently,
for subsonic incompressible flow, highly catastrophic subcriti
divergence was always observed by Amabili et al.@29,30#.

The influence of pressure differential across the shell skin
also been investigated in detail. The present study gives, for
first time, numerical results in agreement with experimental d
obtained at the NASA Ames Research Center more than th
decades ago.
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Stress Field in Finite Width
Axisymmetric Wound Rolls
A model is developed for predicting the stress field within a wound roll of web mate
in which the radial, circumferential, transverse, and shear stresses can vary in bot
roll’s radial and cross-web (transverse) directions. As has been the case in prev
wound roll stress analyses based on one-dimensional models, the present approa
counts for the anisotropic and nonlinear material properties of the layered web mate
and the incremental manner in which the roll is wound. In addition, the present deve
ment accounts for arbitrary cross-sectional geometry and material of the core, and
presence of nonuniform tension across the web’s width during winding. The soluti
developed through an axisymmetric, two-dimensional, finite element analysis w
couples individual models of the core and layered web region substructures. The
stiffness matrix at the core-web interface provides a mixed boundary condition for the
region’s first layer. In several parameter studies, variations of the stress components
roll’s radial and cross-width directions are discussed and compared with prediction
the simpler companion one-dimensional model. The character of the stress field at th
region’s free edges and along the core-web interface, and the possibility of stress co
tration or singularity existing there, are also discussed.@DOI: 10.1115/1.1429934#
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1 Introduction
Continuous sheets of metal, paper, polymer, and other thin

terials are encountered in diverse products and industries. S
‘‘web’’ materials are flexible mechanical structures that are tra
ported under tension and at high speed during their production
processing. In short, wound rolls formed around a central core
common in manufacturing environments, and are generally
most economical and practical format for material storage
transportation.

The stress field within a roll develops incrementally as the fi
layer is wrapped onto a core, followed by the addition of ma
more discrete layers. The resulting stresses determine to a
extent the roll’s quality, and can contribute to such failure mod
as core collapse, interlayer buckling, and starring. While soluti
to such problems can be engineered through empiricism and
and-try efforts, the roll’s state of stress preferably meets cer
design criteria. For instance, the circumferential stress withi
web layer at a given point in the roll can be tensile or compr
sive, but excessive compression can lead to local buckling. L
wise, desirable radial stresses are large enough to prevent
vidual layers from slipping relative to one another, but not so gr
as to cause surface damage.

Research pertaining to the stress analysis of wound rolls h
rich history and has emphasized the development of o
dimensional models wherein the core and web are each treat
being infinitely wide. Those models account for anisotropic a
nonlinear material properties, the bulk compliance of the core,
the roll’s layered structure. Uniform mechanical properties a
tension across the width are likewise specified, and a key assu
tion used in such one-dimensional models is the specificatio
core stiffness being uniform across the roll’s width, a restrict
that is re-examined here.

Altmann @1# treated each web layer as an orthotropic ps
doelastic material, and developed a linear wound roll model w

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct.
2000; final revision, June 5, 2001. Associate Editor: J. R. Barber. Discussion o
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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solutions that could be expressed in the form of easily compu
integrals. Motivated by applications in magnetic tape data stora
Tramposch@2,3# investigated the viscoelastic characteristics
polymeric substrates, and developed a linear, anisotropic,
time-dependent model to examine stress relaxation in wound r
Yagoda@4# demonstrated that the circumferential stress in the
cinity of the core depends strongly on its stiffness. In short, a s
core does not substantially resist the compression afforded by
web layers, in turn generating high compressive circumferen
stresses near the core-web interface and facilitating defects. C
nolly and Winarski@5# surveyed the Altmann and Tramposch fo
mulations, presented parameter studies in Poisson ratio, ra
modulus, winding tension, core radius and thickness, and ev
ated such environmental factors as temperature and humidity

Each of the aforementioned studies specified that the laye
region in the wound roll had linear, albeit anisotropic, elas
properties. However, at the bulk level, the elastic modulus in
layered web region’s radial direction is known to be a nonline
function of the radial stress. Even for such seemingly we
understood materials as sheet steel or aluminum, the wound
stress problem is intrinsically nonlinear, with the roll being pro
erly viewed as a composite, anisotropic, and nonlinear struc
~@6#!. Hakiel @7# and Willett and Poesch@8# represented the lay
ered region’s effective bulk radial modulus as a polynomial fun
tion of the radial stress, and approached the solution through fi
difference methods. Other processes that contribute to bulk m
rial nonlinearity include air entrainment within the roll~@9,10#!
and asperity compliance at the surfaces of the individual w
layers.

Wound roll stress analysis is also governed by the effects
wound-in tension loss, viscoelastic response, and the finite de
mation of materials that are substantially soft in the roll’s rad
direction. Good et al.@11# accounted for tension losses withi
centerwound rolls of highly compressible materials due to redu
interior radius. With corrected values for the wound-in tension
modified and more accurate stress model was developed bas
Hakiel’s approach. Zabaras et al.@12# considered the deformation
history of magnetic tape during winding and developed a
poelastic finite element model which accounts for variable load
rates. Qualls and Good@13# extended previous linear analyses
viscoelastic winding mechanics by accounting for the roll’s no
linear bulk radial modulus. Benson@14# developed an alternative
approach to the wound roll problem by accounting for the g
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the
nt of
ill
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metric nonlinearity that arises when web layers are highly co
pliant. In that approach, finite radial displacements within the r
were treated by monitoring the position of material particles us
a lap index, rather than radius, so as to mark the same mat
location regardless of the deformation level.

These modeling issues play an important part in wound
stress analyses, and challenge the development of efficient
merical methods to predict stresses that can vary in more than
spatial dimension. Some so-called two-dimensional wound
models have been examined by Hakiel@15#, Kedl @16#, and Cole
and Hakiel@17# with a view toward understanding such width
wise variations as the outside roll’s radius, winding tension, a
stress field due to changes in material thickness. In those vie
width-wise variations were modeled under the assumptions
the roll could be partitioned across its width into strips or se
ments that do not couple, and that within each segment,
stresses and displacements are width-independent and can b
culated through a one-dimensional analysis.

The wound roll examined in the present study comprises c
and web regions of finite width, as depicted in Fig. 1. Aside fro
core stiffness, the winding tension, material thickness, and ela
properties can in principle also be nonuniform. Such realistic
tributes are not captured in a one-dimensional model, and it is
objective of this investigation to develop the methodology to
sess their importance. To the extent that the radial complianc
the core varies along the axis of its generator, the innermost
layer is subjected to a stiffness boundary condition that va
across the web’s width. In what follows, by accounting for diffe
ential core compliance, transverse stress, and shear stress
model is capable of predicting the manner in which the wou
roll’s stress field varies in both the roll’s radial and cross-w
directions. In several parameter studies, the extent to wh
stresses vary in the cross-width direction is discussed, and
results are compared with those obtained from the simpler o
dimensional model. Of further interest are the character of
stress field at the web’s free edges and along the core-web in
face, and the possibility of stress concentration or singularity
isting at those points.

2 Core and Wound Roll Model

2.1 Geometry and Boundary Conditions. Figure 1 depicts
a prototypical roll of finite widthw which is formed by winding
continuous web material at specified tensionT onto a core. Shown
illustratively in Fig. 1 as a hollow cylinder, the core has inn
radius r i , wall thicknesst, and coordinatesr 2u2z centered in
the roll. In what follows, the core is treated as having an arbitr

Fig. 1 Schematic of a finite width wound roll comprising the
inner core and wound web regions
Journal of Applied Mechanics
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but axisymmetric geometry, so that the modeled problem
somewhat greater generality than that depicted in Fig. 1. The
itself has thicknessh, and it is wound layer-by-layer into a cylin
drical shape having outer radiusr o and inner radiusr c common
with the core. As an incrementally layered structure, the web
gion is a composite with bulk anisotropic properties, and
formed from N individual layers that have been shrunk-fit on
one another.

The materials and elastic properties of the core and layered
regions in Fig. 1 generally differ. For two core designs, Fig.
depicts the manner in which the core’s compliance changes in
roll’s width-wise direction. Each core has properties and dim
sions as specified in Table 1~plastic!. The collocated point com-
pliance is recorded in Fig. 2 with respect to the core’s rad
direction. The hollow cylindrical core in Fig. 2~a! has a symmetric
stiffness distribution inz, with the compliance at the core’s fre
edges being some three times greater than at the centerline
the cup-shaped core shown in Fig. 2~b!, the asymmetric stiffness
profile varies nearly tenfold between the closed and open ends
the extent that the core’s compliance establishes one boun
condition that is afforded to the layered web region, it is proble

Fig. 2 Collocated point radial compliance of „a… hollow cylin-
drical and „b… cup-shaped cores. The parameter values are as
specified in Table 1 „plastic ….

Table 1 Baseline parameter values used in the case studies
MARCH 2002, Vol. 69 Õ 131
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atic of one-dimensional wound roll models that such gradients
their influence on the roll’s stress field cannot be captured.

Stress componentss r , su , sz , and s rz within the core and
web regions are each functions ofr andz, and equilibrium solu-
tions are subject to certain displacement and traction boun
conditions. For instance, rigid-body motion of a hollow cylind
cal core is suppressed by specifying that transverse displace
vanishes at the center (r i ,0) of the inner core’s surface. As eac
layer is added to the roll, traction conditions over the boundary
imposed as follows:

• inner core surfacer 5r i , zP@2w/2,w/2#, and zÞ(r i ,0):
s r5s rz50,

• upper and lower core surfacesz56w/2 andr P@r i ,r c#: sz
5s rz50,

• upper and lower web surfacesz56w/2 andr P@r c ,r o#: sz
5s rz50,

• outer web surfacer 5r o and zP@2w/2,w/2#: s rz50 and
s r5T/(w(r c1(n21)h))

wheren (1<n<NL) is the integer index of the current layer, an
NL is the total number of layers on the fully formed roll.

2.2 Substructure Stiffness Matrices. In order to account
for realistic core geometry and designs, the wound roll is se
rated into substructuresC5$(r ,u,z):r ,r c,0,u,2p,2w/2,z
,w/2% over the core andW5$(r ,u,z):r c,r ,r o,0,u,2p,
2w/2,z,w/2% over the layered web region, as indicated in F
3. Each substructure is discretized locally through finite elem
and they couple through the interfacial core-web stiffness ma
KC . Unit loads are applied sequentially to those nodes in the c
substructure’s model which are located along the core-web in
face, and the corresponding nodal displacements are recorde
version of the flexibility matrix so obtained, formed of displac
ment vectors inr andz, provides matrixKC of dimension 2(NZ
11)32(NZ11), whereNZ is the number of elements allocate
in z along the core’s axis. Because of the potential variety of c
materials and geometry,KC is analyzed by using a commercia
finite element package. In that manner, the present method is
plicable to designs having arbitrary shape inz, and isotropic,
orthotropic, or anisotropic material properties. For illustration
the case studies which follow, two prototypical core designs
cylindrical and cup-shaped—are considered, each having isotr
properties.

In terms of the layered web region, the equilibrium requi
ments, constitutive equations and conditions of compatibility
represented in terms of the displacement fieldu5$uw%T as Au
50, where A is a matrix differential operator, andu(r ,z) and

Fig. 3 Axisymmetric finite element model used to determine
wound roll stresses s r , su , sz , and s rz , shown illustratively
for a hollow cylindrical core
132 Õ Vol. 69, MARCH 2002
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w(r ,z) are the radial and transverse displacements inW, respec-
tively. The stress field is determined through the method
weighted residuals, and the weak form of the equilibrium con
tions is given by the volume integral

dE
W

uTAudW50 (1)

which provides governing equations overW, the rectangular
cross-sectionA5$(r ,z):r c,r ,r o and2w/2,z,w/2%, and the
boundarydA5$(r ,z): r 5r c or r 5r o and 2w/2,z,w/2%ø$r c
,r ,r o andz56w/2%. Those conditions become

E
W

duS 1

r
~rs r ! ,r2

su

r
1s rz,zD1dwS 1

r
~rs rz! ,r1sz,zDdW50

(2)

or

2pE
A
du~~rs r ! ,r2su1rs rz,z!1dw~~rs rz! ,r1rsz,z!dA50,

(3)

and

2pE
A
S rs r~du! ,r1rsuS du

r D1rsz~dw! ,z1rs rz~~du! ,z

1~dw! ,r ! DdA22pE
dA

~du~s rnr1s rznz!1dw~s rznr

1sznz!!rddA50, (4)

or

2pE
A
~deTs!rdA22pE

dA
~duTt!rddA50 (5)

where n5$nr ,nz%
T is the unit normal, strains e

5$e r ,eu ,ez ,g rz%
T, stressess5$s r ,su ,sz ,s rz%

T, and tractions
t5$s rnr1s rznz ,s rznr1sznz%

T.
Equation ~5! is discretized locally by using four node, rec

tangular, axisymmetric finite elements, each having eight degr
of-freedom. The displacement field within each element
given
by

ue5(
j 51

4

Njaj
e (6)

in terms of shape functionsNj5(a6(r 2r m))(b6z)/(4ab) and
nodal displacementsaj

e5$uj
ewj

e%T. Here r m , 2a, and 2b are the
mean radius, width, and height of each element, respectively, a
Fig. 3. The discretized~5! then becomes

(
i 51

NE

dui
eTS 2pE

Ae
Bi

T~Di~Biai
e2e0i !1s0i !dAe

22pE
dAe

Ni
Tti rddAeD 50 (7)

whereNE5NR3NZ is the total number of elements withNR in
the radial direction,Di is the elasticity matrix,Bi5$%$Ni% is the
derivative of the strain-displacement relations with@#
5@]/]r ,0;1/r ,0;0,]/]z;]/]z,]/]r #, ande0i ands0i are the initial
strain and stress in thei th element.

Sincedui
eT

in Eq. ~7! is arbitrary, solutions satisfyKi
eai

e5f i
e in

terms of the 838 elemental stiffness matrix
Transactions of the ASME
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Ki
e52pE

Ae
Bi

TDiBidAe (8)

and the 831 elemental load vector

f i
e52pE

dAe
Ni

Tti rddAe12pE
Ae

Bi
TDie0idAe22pE

Ae
Bi

Ts0idAe.

(9)

As the nth layer is incrementally added to the roll, the 2~n11!
~NZ11!32~n11!~NZ11! stiffness matrix overW is determined
throughKW5( i 51

N Ki
e , prior to the specification of boundary con

ditions. Likewise, the 2(n11)(NZ11)31 vector of nodal loads
becomesF5( i 51

N f i
e . Summation here indicates the assembly

elemental matrices or vectors by the addition of overlapping te
at adjoining nodes, which requires a connectivity matrix relat
the local elemental nodes to the global structural ones. The
cedure is described in detail by Zienkiewicz and Taylor@18#. The
structure-level stiffness matrix of the entire wound rollR having
boundary conditions as specified above becomesKR5KC1KW ,
where assembly of the matrices corresponding to the interfa
nodes alongr 5r c is implied.

In this manner, the equilibrium conditions are expressed by
system of simultaneous nonlinear algebraic equationsKR(a)a
5F. As discussed in the following section, nonlinearity aris
from the stress-dependent bulk properties inW, namely KW
5KW(sr).

2.3 Web Region Elasticity Matrix. The elasticity matrix
Di for each elementi within W is an important aspect of th
wound roll stress model. With each layer or group of layers h
ing polar orthotropy, some ten material constants—moduliEu and
Ez , bulk radialEr , and bulk shearGrz moduli, and Poisson ratios
nuz , nur , nzr , nzu , n ru , andn rz—are needed to specify prope
ties in the web region. Even for typical, not to mention exo
materials, numerical values for those parameters are known
varying degrees of certainty, and it is problematic to estim
some of the parameters. For instance, the moduliEu andEz , and
ratiosnuz andnzu , can be readily measured. Since parametersnur
and nzr relate in-plane loads to out-of-plane displacements, t
are challenging to measure for an already thin web layer.
specific Er(s r) dependence can be determined experiment
through standard compression testing of a stack of web mat
having representative dimensions~@6,8#!. By fitting a polynomial
curve, for instance, to the measured data, a functional expres
for the bulk-level radial modulus can be obtained.

Accurate numerical values for ratiosn ru andn rz , however, are
generally not available. Their measurement requires the app
tion of compressive forces across the layer’s thickness dimens
s
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with the measurement of corresponding displacements or str
in u andz. In practice, however, such compression plate fixtu
invariably restrict in-plane expansion through frictional conta
Thus, conventionally in the analysis of wound roll stresses a
with an acknowledged view towards expediency,n ru andn rz are
approximated on the basis of a material symmetry condition. S
cifically, to the extent the roll deforms elastically and in a pa
independent manner,

n ru5nur

Er

Eu
, n rz5nzr

Er

Ez
, nzu5nuz

Ez

Eu
, (10)

the latter of which can be directly measured in principle. For
sample polymeric material in Table 1, these conditions provide
approximationsnzu50.233, and ats r51 MPa compression,n ru
50.021 andn rz50.016. However, because of interlayer slippa
and other effects, real web materials and rolls exhibit some de
of asymmetry along the loading-unloading path. As a result,
condition~10! is not strictly applicable and should be viewed as
physically motivated approximation. In the authors’ measureme
on certain polymers, for instance, at identical values ofs r , Er
values which differ by 50–100 percent between the loading
unloading portions of a compression test have been observed
the extent thatEr is already typically much smaller thanEz and
Eu , the n ru and n rz values calculated through Eq.~10! are like-
wise small, and Benson@14# has suggested specifyingn ru5n rz
'0. On the other hand, aside from the small differences in
merical values between application of the~questionable! material
symmetry condition and the specification of~arbitrary! small val-
ues forn ru andn rz , application of Eq.~10! does have the pleasin
attribute that mathematical symmetry ofKW is preserved. On bal-
ance, and from that standpoint of computational efficien
the material symmetry condition is used here in determin
n ru , n rz , andnzu , even while recognizing the limitations of tha
approximation.

With respect to the shear modulus,Grz can in principle be
determined experimentally by loading a stack of material inz
under prescribed compressive stress, in conjunction with an a
lar distortion. The value so measured would be valid up to
point at which interlayer slippage began. Lacking such availa
measured data forGrz in the literature, in case studies here,Grz is
specified to be constant~100 MPa! near the value~130 MPa!
Er /(2(11n rz)) at s r521 MPa. Subsequent parameter stud
with various values ofGrz in the range 25;400 MPa have dem-
onstrated that the wound roll stresses are generally insensitiv
Grz , with variations less than five percent, except fors rz which
varies withGrz in a substantially proportional manner.

With these considerations in mind,Di becomes
Di5C0F Er~12Ez /Eu!nuz
2 ~Eun ru1Ezn rznuz! Ez~n run rz! 0

Eu~12~Ez /Er !n rz
2 ! Ez~Ernuz1Eun run rz!/Er 0

Ez~12~Eu /Er !n ru
2 ! 0

Symmetric Grz /C0

G (11)
sti-

be-
e

ge
where

C0
215122~Ez /Er !n runuzn rz2n rz

2 ~Ez /Er !2nuz
2 ~Ez /Eu!

2n ru
2 ~Eu /Er !. (12)

2.4 Computation and Iteration. The equilibrium equations
are writteng(a)5KR(a)a2F in terms of the nodal displacement
and roots are found through Newton-Raphson iteration. As e
layer or group of layers is added to the stratifiedW, a truncated
,
ach

Taylor expansion is used to linearize about either an initial e
mate atn51 or the converged resulta* obtained from a previous
iterate.

Computation begins by evaluatingKR at an initial estimate of
the stress field. In the first iteration, the nodal displacements
comea15KR

21(a* )F. The vector of imbalanced nodal loads in th
second iteration becomesDf25KR(a1)a12F. The incremental
nodal displacementsDa in the second iteration areDa2

5KR
21(a1)Df2 , and the cumulative displacements at that sta
MARCH 2002, Vol. 69 Õ 133
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becomea25a11Da2 . Generally, at thej th iteration, the imbal-
anced load, incremental displacement, and cumulative displ
ment fields are calculated through

Df j 115KR~aj !aj2F (13)

Daj 115KR
21~aj !Df j 11 (14)

aj 115aj1Daj 11 . (15)

For each system of locally linearized equilibrium conditions
preconjugate gradient method is used to determine theDaj , and
convergence is identified by evaluating the normh
5((Daj

2/(aj
2)1/2. If h falls below a specified tolerance, say 1023

as in the case studies below, iteration is terminated.
With the nodal displacements so obtained, the stresses w

elementi of the wound roll are incremented by

Dsni5Di~Biai2e0i !1s0i (16)

as thenth layer is added. In turn, the cumulative stress

sni5s~n21!i1Dsni (17)

is represented in terms ofsni and the stressess(n21) i developed
by the first through (n21)st layers.

3 Comparisons and Convergence
Results obtained from the present analysis are benchma

against the one-dimensional model of Hakiel@7#, which does in-
clude the effects of nonlinear radial modulus and uniform c
compliance. Parameter values are as specified in Table 1, an
a hollow cylindrical core, Hakiel’s ‘‘effective core modulus’’ wa
calculated through

Ec5
E~12~r c2t !2/r c

2!

~11n!~r c2t !2/r c
21~12n!

(18)

whereE and n are the core’s modulus and Poisson ratio. As
from discretization, in Hakiel@7# equilibrium is only approxi-
mately satisfied sinceEr is calculated based on the stress state
the previous, not the current, layer was added, and is specifie
be a constant as each layer is added. For slightly greater accu
here, the modulus is calculated based on the stress state a
current iteration.

A comparison ofs r and su for the two solutions is shown in
Fig. 4, where values calculated along the roll’s centerlinez50 are
shown for the two-dimensional model~NR5100 andNZ580!.
The two-dimensional model, which does not assume condition
plane strain or neglect Poisson coupling as does the o
dimensional model, predicts larger values of the radial stress
some 15 percent, with peak values of21.76 and22.02 MPa for
the two models, respectively. The maximum occurs in each c
near r 532 mm. In terms ofsu , the two solutions are in close
agreement along the centerline with maximum deviation at
core-web interface of less than ten percent.

In a one-dimensional model, no free edge exists along the c
web interface, and in particular, no free surface of dissim
bonded materials exists, as is the case in a two-dimensional m
~points P2, for instance, in Fig. 3!. For linear, isotropic, homoge
neous materials, such configurations are associated with s
concentration or even singularity, and the corner stress can
non-singular, or of orderr2l, or logr, where r is the radial
distance from the corner andl is an exponent, depending o
material properties and the type of loading~@19#!. In addition, in
related problems of elastic inclusions within a half-space or i
134 Õ Vol. 69, MARCH 2002
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nite plate, the strength of the singularity depends on the ratio
the ~differing! material properties of the inclusion and the su
rounding material~@20#!.

Dundurs@21# demonstrated that the influence of the elastic co
stants for two isotropic edge-bonded materials is set by the
variables a5(Ē12Ē2)/(Ē11Ē2) and b5(m1(k221)2m2(k1

21))/(m1(k211)1m2(k111)), where Ēj5Ej and kj5(3
2n j )/(11n j ) for plane stress orĒj5Ej /(12n j

2) and k j53
24n j for plane strain. In that formulation,Ej , n j , and m j ( j
51,2) are the elastic moduli, Poisson ratios, and shear modul
the two edge-bonded regions, and the corner stress is chara
ized by the numerical value of the determinant quantitya(a
22b). For strictly positive values, stresses at the corner are
gular at orderr2l; for strictly negative values, the stresses a
finite and nonsingular; and for vanishing determinant, the stres
can be singular of order logr, depending on the applied load
~@19#!.

For anisotropic materials, the character of the free-edge co
stresses in ideally bonded quarter-spaces of dissimilar mate
has been investigated by Wang and Choi@22,23#. That solution
was developed through Lekhnitskii stress potentials, and an ei
function expansion was developed to obtain the stress field
the free edge. Alternative approaches have included enriche
nite element and boundary integral methods which offer com
tational efficiency~@24#!. The nature of the free-edge corner stre
singularity in composite laminates remains an open issue, and
present two-dimensional model can be viewed as a tool for
ploring the presence of stress concentration or singularity at
edges of the core-web interface.

With solutions here based on finite element, the presence
singularity is only suggested by high stress gradients and/or s
convergence rates under successive mesh refinements. Suc
culations identify whether stresses converge uniformly at edge
the core-web interface and enable stress concentration facto
be quantified, or whether the stresses do not converge or conv
slowly, in which case singularity is possible. For properties
specified in Table 1, Fig. 5 depicts convergence ofs r in the roll’s
first layer for the cases of plastic and aluminum cores. In e
case, the radial stress converges quickly at point P1 (z50) in Fig.
3, and for the plastic core,s r also converges byNZ540 at points
P2 (z56w/2), namely, edges of the interface. However, with
aluminum core, the radial stress at P2 has not converged

Fig. 4 Comparison of the radial and circumferential stresses
along centerline zÄ0 as determined through the present „ …

and one-dimensional „-----; Hakiel †7‡… models. The parameter
values are as specified in Table 1 „plastic, hollow core ….
Transactions of the ASME
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successive mesh refinements even atNZ5160. This material-
dependent behavior is analogous to that observed in studie
other edge-bonded regions.

When stresses are finite and converged at P2, stress conce
tion factors between the roll’s nominal centerline stresses
those at the core-web interface’s edge can be identified. The c
web variation ofs r in the first layer is shown in Fig. 6 for both
plastic and aluminum cores. In Fig. 6~a! for the hollow plastic
core, the stress at the edges is someK51.22 times greater than
the centerline value, which could be a useful quantity in analyz
wound roll defects. In Fig. 6~b!, the shaded zones denote th
regions where the stresses have not converged to three signi
digits atNZ5160. Even in that case, however, the influence of
potential singularity is localized since the stress solution has
isfactorily converged over 90 percent of the roll’s width.

Fig. 5 Convergence of s r at points P1 and P2 in Fig. 3 for „a…
plastic and „b… aluminum cores. The radial stress converges
well along the roll’s centerline in each case, and at the edge of
the core-web interface for the plastic material.

Fig. 6 Cross-web variation of s r along the core-web interface
for hollow „a… plastic and „b… aluminum cores; NZÄ80 „ssss…,
and NZÄ160 „ …. The shaded zones in „b… denote regions
where the stresses have not converged to three significant
digits.
Journal of Applied Mechanics
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4 Discussion and Further Applications

4.1 Stress Field With a Hollow Core. Figures 7–9 depict
variations of the four stress components as functions ofr andz for
a wound roll having hollow core, dimensions, and properties
specified in Table 1. In Fig. 7, the maximum compressive rad
stress of 1.89 MPa occurs at~31.6,66.35! mm. The cross-width
variation ofs r diminishes with radial distance from the core. I
the regionr 525;30 mm, for instance, the cross-width variatio
in s r is greater than ten percent. For the inner 58 percent of
layered region, the cross-width variation is greater than five p
cent but becomes smaller at larger distances from the core
accordance with St. Venant’s principle.

The circumferential stress is tensile atr o , vanishes nearr
535 mm, and is compressive at radial locations nearer to c
and with negligible cross-width variation. In an axisymmetr
structure,su depends only on radial displacement, which in tu

Fig. 7 Surface and contour representations of the radial and
cross-web variation of s r ; NRÄ100, NZÄ80. The parameter
values are as specified in Table 1 „plastic, hollow core ….

Fig. 8 Surface and contour representations of the radial and
cross-web variation of su ; NRÄ100, NZÄ80. The parameter
values are as specified in Table 1 „plastic, hollow core ….
MARCH 2002, Vol. 69 Õ 135
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is almost uniform for the chosen core design and with unifo
winding tension. The maximum compressive value forsu of 10.9
MPa occurs at the core-web interface.

In Fig. 9, the transverse and shear stresses are significant
near the core-web interface, and rapidly fall to almost zero e
where. The localized character ofsz ands rz is attributed prima-
rily to Poisson coupling in the core. Away from the interfac
Poisson coupling is negligible becausen rz andnuz are small, and
the stresses are likewise small. Although the solutions forsz and

Fig. 10 Surface and contour representations of the radial and
cross-web variation of s r ; NRÄ100, NZÄ80. The parameter
values are as specified in Table 1 „plastic, cup-shaped core ….

Fig. 9 Radial and cross-web variations of „a… sz and „b… s rz ;
NZÄ80 „surface … and NZÄ160 „ssss; first layer only …. The
parameter values are as specified in Table 1 „plastic, hollow
core ….
136 Õ Vol. 69, MARCH 2002
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s rz are highly localized, their solutions have converged in Fig.
where results forNZ580 ~surface! are compared in the first web
layer with the results forNZ5160 ~data points!.

In the foregoing analysis, adjacent layers are assumed to rem
in contact with no lateral slippage. With an assumed coefficien
friction of, say m50.3, that assumption can be re-examined
comparing the magnitudes ofs rz andms r . Over the entire web
domain,s rz is smaller, providing internal consistency at least wi
respect to this no-slippage assumption.

4.2 Stress Field With a Cup-Shaped Core. When the core
is cup-shaped with wall thickness, width, outer radius, and pla
material properties as specified in Table 1, Figs. 10 and 11 de
the radial and circumferential stresses as functions ofr andz. In
the roll’s first layer, the compressive radial stress varies betw

Fig. 11 Surface and contour representations of the radial and
cross-web variation of su ; NRÄ100, NZÄ80. The parameter
values are as specified in Table 1 „plastic, cup-shaped core ….

Fig. 12 Variations of s r and su along the roll’s centerline with
increasing numbers of web layers: 25 percent, 50 percent, and
100 percent of a full roll; NRÄ100, NZÄ80. The parameter val-
ues are as specified in Table 1 „plastic, cup-shaped core ….
Transactions of the ASME
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3.95 MPa at the closed stiff end to 0.89 MPa near the open c
pliant side. Although the gradient fors r near the stiff edge is
steep, the solution has converged to three significant digits.
circumferential stress varies along the core-web interface f
3.92 MPa~tension! at the closed end to 15.2 MPa~compression!
at the core’s compliant side. Cross-web variations ofs r and su
for this geometry are more significant than for the hollow cyl
drical core, and becausesu is not always compressive along th
core-web interface, winding defects could potentially be genera
in W on only one face of the roll.

In the regionr 525;40 mm, cross-width variation ofs r is
greater than ten percent, and the cross-width variation for
radial and circumferential stresses is greater than five percent
some 73 percent and 67 percent of the roll, respectively. Cont
of s r and su are shown as insets in Figs. 10 and 11. In t
example, the stress gradients inz near the core are sufficientl
large that the stress field would not be well approximated
a one-dimensional model imposing uniform width-wise co
stiffness.

4.3 Variable Roll Radius. Since the stress field in a woun
roll depends on the overall number of layers in the roll, Fig.
depicts a comparison ofs r andsu along the centerline for differ-
ent numbers of wound-on layers, corresponding to quarter-
half-full, and full rolls on a cup-shaped core. Similarly, Fig. 1
shows contour representations ofs r andsu for these cases. The
compressive radial and circumferential stresses each grow aNL
increases. The compressive radial stress is maximized a
~closed stiff end! along the core-web interface and becomes m
compressive with increasingNL. The cross-web variation for the
radial stress is greater than five percent over more than 70 pe
of the web region for each of the three rolls.

In terms of su , the cross-web variation for the quarter an
half-full rolls exceeds 26 percent and six percent, respectiv
over the entire roll, excluding the outermost layer at which
boundary condition of specified tension is applied. For quar
full, half-full, and full rolls, the s r values along the core-we
interface are~21.87, 23.01, 23.95! MPa at the closed end
~20.76,21.00,21.21! MPa at the centerline; and~20.77,21.05,
21.20! MPa at the open end. Likewise, thesu values at those
points are~6.20, 5.01, 3.92! MPa, ~22.37, 25.47, 28.03! MPa,
and ~27.94, 212.12,215.21! MPa, demonstrating the presenc

Fig. 13 Radial and cross-web variations of s r and su with in-
creasing numbers of web layers: 25 percent, 50 percent, and
100 percent of a full roll; NRÄ100, NZÄ80. The parameter val-
ues are as specified in Table 1 „plastic, cup-shaped core ….
Journal of Applied Mechanics
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of significant cross-width variation. In each case,su varies further
from tension to compression across the roll’s width.

5 Summary
The width-wise variation of stresses in wound rolls is inves

gated by using a two-dimensional, axisymmetric, finite elem
model. The present analysis relaxes assumptions made in pre
one-dimensional models in which the roll was specified to
infinitely wide and with uniform core stiffness, winding tensio
and material properties. By separating the wound roll into t
regions—the core and layered web substructures—general
geometry and designs can be accommodated, analyzed,
optimized.

In several case studies with different materials and core ge
etry, the radial and cross-web variations of thes r , su , sz , and
s rz stress components, as well as stress concentration or pote
singularity at the free edges of the core-web interface, are inv
tigated. The transverse and shear stress in these examples ar
nificant only near the core-web interface and are attributed
Poisson coupling and strain mismatch between material pro
ties. The model can be used for quantifying stress concentratio
edges of the core-web interface, and for identifying material co
binations and core designs for which certain stress compon
are expected to be finite or singular. The model can further
applied to investigate the stress state in the presence of non
form winding tension or material thickness across the we
width, and those areas are subjects of current investigation.
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An Alternative Decomposition
of the Strain Gradient Tensor
An alternative decomposition of the strain gradient tensor is proposed in this pap
order to ensure that the deviatoric strain gradient vanishes for an arbitrary volume
strain field, which is consistent with the physical picture of plastic deformation.
theory of mechanism-based strain gradient (MSG) plasticity is then modified accord
based on this new decomposition. The numerical study of the crack-tip field based
new theory shows that the crack tip in MSG plasticity has the square-root singularity,
the stress level is much higher than the HRR field in classical plasticity.
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1 Introduction
Fleck and Hutchinson@1# proposed a phenomenological theo

of strain gradient plasticity in order to characterize the size dep
dence observed in the micron and submicron scale experim
~@2–9#!. The strain gradient tensorh i jk5uk,i j is decomposed into
a volumetric parth i jk

H and a deviatoric parth i jk8 , h i jk5h i jk
H

1h i jk8 , where uk is the displacement, andh i jk
H 51/4 (d ikh jpp

1d jkh ipp) ~@10#!. Within the same theoretical framework~@1#!,
Gao, Huang and co-workers~@11,12#! developed the mechanism
based strain gradient~MSG! plasticity theory from the Taylor
model in dislocation mechanics, and the theory agrees very
with the micro-indentation, microtorsion, and microbend expe
ments~@13,14#!.

Hwang and Inoue@15# investigated the strain gradient effect fo
the following displacement field:

u15A~x1
22x2

22x3
2!12Bx1x212Cx1x3 ,

u252Ax1x21B~2x1
21x2

22x3
2!12Cx2x3 , (1)

u352Ax1x312Bx2x31C~2x1
22x2

21x3
2!,

whereA, B, andC are constants. It gives a pure volumetric stra
field, « i j 52(Ax11Bx21Cx3)d i j , i.e., the deviatoric strain field
« i j8 vanishes. The strain gradient field, however, is not pure vo
metric because the deviatoric strain gradient field does not van
h i jk8 Þ0. It is quite puzzling that a pure volumetric strain fie
gives a deviatoric strain gradient field because the former imp
no plastic deformation~since plastic deformation is always devi
toric! while the latter represents the plastic deformation associ
with the geometrically necessary dislocations~@11#!. It should be
pointed out that the above puzzle between the volumetric st
field and deviatoric strain gradient field does not apply to the fl
theories of strain gradient plasticity~@1,16–19#! because of the
clear distinction between the plastic strain and the total strain

1To whom all correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
18, 2001; final revision, July 18, 2001. Editor: M. Ortiz. Discussion on the pa
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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does not affect the deformation theory of MSG plasticity~@11,12#!
either since the theory assumes material incompressibility.

An alternative decomposition of the strain gradient tensor
proposed in this study,

h i jk5h̄ i jk
H 1h̄ i jk8 , (2)

which gives a vanishing deviatoric parth̄ i jk8 for an arbitrary volu-
metric strain field. The theory of MSG plasticity~@11,12#! is then
generated accordingly to include the elastic deformation. Fina
we study the crack-tip field with the elastic-plastic theory of MS
plasticity, and show that the stress field around the crack tip
the square-root singularity.

2 Decomposition of the Strain Gradient Tensor
Because the strain gradient tensor can be expressed in term

the strain,h i jk5« ik, j1« jk,i2« i j ,k , a natural way to define the
deviatoric strain gradient is to replace the strain by its deviato
part « i j8 (5« i j 21/3«kkd i j ) in the above relation, i.e.,

h̄ i jk8 5« ik, j8 1« jk,i8 2« i j ,k8 , (3)

which clearly vanishes for a purely volumetric strain field@e.g.,
~1!#. The corresponding volumetric part of the strain gradient t
sor becomes

h̄ i jk
H 5h i jk2h̄ i jk8 5

1

3
«pp, jd ik1

1

3
«pp,id jk2

1

3
«pp,kd i j . (4)

The above decomposition is different from the existing strain g
dient theories~@1,11,12#!, and it ensures that the deviatoric an
volumetric part of the strain gradient field result from the dev
toric and volumetric strain fields, respectively.

The higher-order stress, which is the work conjugate of
strain gradient tensor, is decomposition differently,t i jk5 t̄ i jk

H

1 t̄ i jk8 , such that the virtual work done by the higher-order stre
can be separated into the hydrostatic and deviatoric parts

dw5t i jkdh i jk5 t̄ i jk
H dh̄ i jk

H 1 t̄ i jk8 dh̄ i jk8 . (5)

This requires the cross termst̄ i jk
H dh̄ i jk8 and t̄ i jk8 dh̄ i jk

H to vanish,
which gives the unique decomposition of the higher-order str
as

t̄ i jk8 5t i jk2 t̄ i jk
H , (6)
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Fig. 1 The effective stress se normalized by the uniaxial yield stress sY
versus the normalized distance to the crack tip, r Õ l , ahead of the crack tip,
where l is the intrinsic material length in strain gradient plasticity; the plas-
tic work hardening exponent NÄ0.2, Poisson’s ratio nÄ0.3, the ratio of yield
stress to elastic modulus sY ÕEÄ0.2 percent, and the remotely applied elas-
tic stress intensity factor K I ÕsYl 1Õ2Ä20
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t̄ i jk
H 5

1

3
d ikS t jpp2

1

2
tpp jD1

1

3
d jkS t ipp2

1

2
tppiD . (7)

Unlike other strain gradient theories~@1,11,12#!, the decomposi-
tion of the higher-order stresst i jk is different from that of the
strain gradienth i jk .

3 The Elastic-Plastic Theory of Mechanism-Based
Strain Gradient Plasticity

Let s5s ref f («) be the uniaxial stress-strain relation, ands ref
be a reference stress in uniaxial tension. The flow stresss in MSG
plasticity is established from Taylor model in dislocation mech
ics as~@13#!

s5As ref
2 f 2~«!118a2m2bh5s refAf 2~«!1 lh, (8)

where«5A2/3« i j8 « i j8 is the effective strain,m the shear modulus
b the Burgers vector,a (0.1;0.5) an empirical material constan
in the Taylor dislocation model, and the effective strain gradienh
is determined by three dislocation models~@11#! for an incom-
pressible solid ash51/2Ah i jk8 h i jk8 . Here the deviatoric strain gra
dient tensorh i jk8 is the same ash̄ i jk8 in ~3! for an incompressible
solid, therefore a natural generalization ofh for an elastic-plastic
~compressible! solid is

h5
1

2
Ah̄ i jk8 h̄ i jk8 . (9)

The parameterl in ~8! is the intrinsic material length in strain
gradient plasticity given by

l 518a2S m

s ref
D 2

b, (10)

which is on the order of a few microns.
Following the same multiscale approach~@11#!, we have estab-

lished the constitutive law for the elastic-plastic theory of MS
plasticity based on the alternative decomposition of the strain
dient tensor in~2!–~4!.

s i j 5K«kkd i j 1
2s

3«
« i j8 , (11)
2002
n-

t
t

G
ra-

t i jk5 l «
2F K

24
~d ikh jpp1d jkh ipp!1

s

«
~L i jk2P i jk !

1
s ref

2 f ~«! f 8~«!

s
P i jk G , (12)

whereK is the elastic bulk modulus;s is the flow stress in~8!;

L i jk5
1

72
~2h̄ i jk8 1h̄k j i8 1h̄ki j8 !, P i jk5

«mn8

54«2 ~« ik8 h̄ jmn8 1« jk8 h̄ imn8 !;

(13)

l «510(m/sY)b, andsY is the initial yield stress in uniaxial ten
sion.

4 Crack-Tip Singularity in MSG Plasticity
We use the finite element method for the elastic-plastic the

of MSG plasticity to investigate the mode I crack-tip field an
crack-tip singularity. A semi-infinite crack in an infinite elastic
plastic solid remains traction-free on the crack face. The elastK
field is imposed on the remote boundary. The plastic wo
hardening exponentN50.2, the ratio of yield stress to Young’
Modulus sY /E50.2 percent and Poisson’s ration50.3. Details
of the numerical analysis are omitted in this paper.

Figure 1 shows the normalized Von Mises effective stre
se /sY , versus the nondimensional distance to the crack tip,r / l ,
ahead of the crack tip, wheresY is the yield stress andl is the
intrinsic material length in strain gradient plasticity. The resu
are presented for both the elastic-plastic theory of MSG plasti
and the classical theory of plasticity~i.e., without strain gradient
effects!. The remote applied stress intensity factor isKI /sYl 1/2

520. The horizontal line ofse /sY51 separates the elastic an
plastic zones. Outside the plastic zone, both curves emerge to
same straight lines with the slope of21/2, corresponding to the
elasticK field with the square-root singularity. Within the plast
zone, the two curves are also essentially the same at a dist
larger than 0.4l to the crack tip. Within 0.4l to the crack tip, MSG
plasticity theory predicts significantly larger stresses than th
counterparts in classical plasticity. Moreover, classical plastic
theory gives a straight line with the slope of2N/(N11), corre-
sponding to the HRR field~@20,21#!, while MSG plasticity theory
Transactions of the ASME
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gives another straight line of slope21/2, corresponding to the
square-root singularity. In other words, stresses have the squ
root singularity around a crack tip in MSG plasticity.

5 Concluding Remarks
We have proposed an alternative decomposition of the st

gradient tensor in order to ensure that the deviatoric strain gr
ent tensor vanishes for an arbitrary volumetric strain field« i j
5«(x)d i j . This is consistent with the physical picture of plas
deformation since a pure volumetric strain field does not co
spond to any plastic deformation~and therefore no dislocation
activities! such that the deviatoric strain gradient should van
since the latter is related to the density of geometrically neces
dislocations. We have modified the theory of mechanism-ba
strain gradient~MSG! plasticity ~@11–13#! according to this new
decomposition of the strain gradient tensor. We have then use
finite element method to investigate the crack-tip field in MS
plasticity, and have established that the crack tip has the squ
root singularity. Within a distance on the order of microns to cra
tip, the stress level predicted by MSG plasticity is significan
higher than the HRR field for classical plasticity.
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Normal Indentation of Elastic
Half-Space With a Rigid
Frictionless Axisymmetric Punch
The contact of a simply connected axisymmetric punch with an elastic half-spa
examined. The problem is mathematically formulated by using potential theory and
plex variable analysis. The final solution of these equations is obtained by assum
polynomial punch profile. The conditions for complete contact and incomplete contac
also derived. The solutions give the pressure profile at the punch–elastic half-space in-
terface for any polynomial punch profile, even for noninteger power polynomials, as
as the contact region is simply connected. The results show that some classic solut
linear elasticity are special cases of the derived solution and determine the rang
validity for those solutions.@DOI: 10.1115/1.1445145#
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1 Introduction
Contact pressure distribution between two surfaces has alw

been of great interest to engineers. Perhaps the most widely
equation for bearing application is Hertz’s solution. Boussine
solution for flat-ended punch finds its application in the saf
evaluation of foundations in civil engineering. Recently, resear
ers used Love and Sneddon solution for conical punch to exp
nanoindentation experimental data~e.g., Hay et al.@1#!. In elastic
emission machining~EEM!, the material is removed through th
atomic scale elastic fracture without plastic deformation~see Ko-
manduri @2#!. Indentation model for different particle shape
needed to investigate this process. The material removal ra
chemical mechanical planarization~CMP! of silicon wafer largely
depends on the pressure distribution on the wafer surface~Fu and
Chandra@3#!. Shield and Bogy@4# investigated the indentation o
a flat-ended punch into layered elastic half-space. Their solu
may be used in the evaluation of protective coating to prevent
substrate from wear under sliding contact.

When a rigid axisymmetric punch indents normally into
elastic half-space, there are two possibilities: one is that the w
punch surface contacts with the half-space; the other is that
part of the punch contacts with the half-space. Following the
minology by Gladwell@5#, the first contact is called complete o
bonded, and the second one is termed incomplete or unbonde
the second case, the contact pressure will drop to zero at
boundary of the contact region. Complete contact can be class
further into critical complete contact and general complete c
tact. In general complete contact, pressure at the punch edge
to infinity; in critical complete contact, pressure drops to zero
the punch edge and the pressure profile is similar to that of
complete contact.

The axisymmetric solutions for a punch whose shape is fl
ended, conical, or parabolic have been known for years. H
found the solution for the parabolic punch in 1882 when he
vestigated the pattern of interference fringes between glass le
~see Johnson@6#!. His solution is only valid when the contact i
incomplete. Bousinessq obtained the pressure distribution f
flat-ended punch in 1885 and found the square root singularit

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision, Sept. 21, 2001. Associate Editor: J. R. Barber. Discussion o
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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the punch edge~see Johnson@6#!. To solve conical punch prob
lem, Love@7# used potential theory and Sneddon@8# used integral
transform method to get the same result. They found that th
exists a logarithmetric singularity at the conical tip, and their s
lutions are also for incomplete contact. For circular annular pu
problem, Collins @9# used potential theory and superpositio
method to obtain the solution.

Popov @10# shows: If a normal pressure distribution on th
planez50 over a circular area with radiusa has a square-roo
singularity at the edge and is in the formP2n@(12r 2/a2)1/2#/(1
2r 2/a2)1/2 where Pn(x) is the Legendre polynomial, then th
vertical displacement on the planez50 over the circular area will
be proportional toP2n@(12r 2/a2)1/2#, which is an even polyno-
mial.

In this paper, we consider a rigid frictionless axisymmet
punch with a polynomial profile and axis of revolution as t
z-axis, indenting normally into the planez50 of an elastic half-
spacez>0. The problem is considered in linear theory of elast
ity and the elastic half-space is assumed to be isotropic and
mogeneous. The punch is assumed to be rigid with sharp corn
which may lead to singularities in the contact pressure at th
corners. The problem is solved by using potential theory and c
plex variable analysis. Green’s solution@11# is utilized and with
the aid of mathematical softwareMATHEMATICA ~Wolfram
@12#!, the final solution is obtained. Also, the conditions for th
complete and incomplete contacts are derived. The solutions
the pressure profile at the punch–elastic half-space interface
any polynomial punch profile, even for noninteger power polyn
mials so long as the contact region remains simply connected
special cases of the obtained solution, we show the results for
kinds of punchs: flat-ended punch, square-root punch, con
punch, three half-power punch, and parabolic punch.

2 The Problem Formulation in the Theory of Linear
Elasticity

The following equations give the relevant displacement a
stresses. The vertical component of the displacement is den
by uz , and the stress components have two subscripts corresp
ing to the appropriate coordinates.E andn are Young’s modulus
and Poisson’s ratio for the elastic half-space.

As Fig. 1 shows, the boundary conditions for the indentat
problem are

tzr5tzu50, ~0<r ,`! (1)

szz50, ~r .a! (2)
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E
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uz5 f ~r !, ~0<r<a! (3)

where f (r ) is the final position of the punch.
This boundary value problem can be changed into the follow

equivalent potential theory problem~see Green and Zerna@11#!:

]v

]z
50, ~r .a! (4)

v5 f ~r !, ~0<r<a! (5)

¹2v50. (6)

Green @11# considers the following potential function forv,
which can be obtained through Fourier cosine transform~see
Gladwell @5#!:

v~r ,z!5
1

2 E0

a g~ t !dt

Ar 21~z1 i t !2
1

1

2 E0

a g~ t !dt

Ar 21~z2 i t !2
. (7)

Green@11# finds that if f (r ) is continuously differentiable in
0<r<a, then

g~ t !5
2

p

d

dt E0

t r f ~r !

At22r 2
dr. (8)

His further derivation leads to

szzuz50
5

1

2
•

E

12n2 •
1

r
•

]

]r Er

a tg~ t !

At22r 2
dt, ~0<r<a!. (9)

Green and Zerna@11# have used Eq.~9! to solve the Boussinesq
problem for a flat-ended punch. This paper will derive the solut
for punches with general polynomial profiles and the conditio
for this solution to be valid in different contact situations; t
load-displacement relationship is also given.

3 Analytical Solutions
We express the displacement field under the punch as a p

nomial:

f ~r !5(
a50

an

aar a, ~a50,a1 ,a2 , . . . ,an and a>0!

(10)

where the function(a5a1

an aar a describes the shape of the punc

a0 describes the depth of indentation and is non-negative, anda is
not necessarily an integer.

3.1 The Solution Whena is Not an Integer but is a Posi-
tive Real Number. Substituting Eq.~10! into Eq. ~8! and Eq.
~9!, with the aid of the symbolic manipulation programMATH-
EMATICA ~Wolfram @12#! we have

Fig. 1 Normal indentation of an elastic half-space
Journal of Applied Mechanics
ing
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e
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h,

szzuz50
5

1

2Ap
•

E

12n2 (
a50

an

aa~11a!•

GS 21a

2 D
GS 31a

2 D F~r ,a!

(11)

where

F~r ,a!5
Ap

2
•~11a!•

GS 2
11a

2 D
GS 2

a

2 D r 211a

2
a11a

r 2 F 1

A12
r 2

a2

22F1S 1

2
,2

11a

2
;
12a

2
;

r 2

a2D G
(12)

and2F1(a,b;c;z) is hypergeometric function.
Equation~11! and Eq.~12! are general formats; however, on

cannot use them directly whena a non-negative integer. The fol
lowing two sections will give the explanations and the spec
formats when this happens.

3.2 The Solution Whena is Zero or a Positive Even Inte-
ger. If we utilize Eq. ~12! and noteG~2a/2!5`, the function
F(r ,a) can be simplified as

F~r ,a!52
a11a

r 2 F 1

A12
r 2

a2

22F1S 1

2
,2

11a

2
;
12a

2
;

r 2

a2D G .

(13)

To use elementary functions to expressF(r ,a), we can derive
by hand by lettingt5r secu and obtain the following alternative
expression:

F~r ,a!5~11a!r a21F(
i 50

a/2 GS a

2
11D

GS a

2
112 i DG~ i 11!

•

SAa22r 2

r D 2i 11

2i 11 G2
a11a

r 2

1

A12
r 2

a2

. (14)

3.3 The Solution Whena is a Positive Odd Integer. If we
use Eq.~12!, we will have F(r ,a)5`2` and it is difficult to
decide its limit. To avoid this problem, we lett5r secu and de-
rive by hand the following solution:

F~r ,a!5~11a!•r a21 (
i 50

a11/2 GS a13

2 D
GS a13

2
2 i DG~ i 11!

I i~r !

2
a11a

r 2

1

A12
r 2

a2

(15)

where
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•SAa22r 2

r D 2i 21

2
2i 21

2i
l i 21 with l 0~r !

5
1

2
lnS a1Aa22r 2

a2Aa22r 2D . (16)

3.4 Total Load. The total vertical force needed to cause t
displacementa0 is

Fz52E
0

a

szzuz50
•2prdr 5Ap

E

12n2 (
a50

an

aa•

GS 21a

2 D
GS 31a

2 D a11a.

(17)

3.5 Condition for Using the Solution. If the whole punch
contacts with the half-space, i.e., the contact region is simply c
nected, we need to have

szzuz50
<0 ~0<r<a! or lim

r→a2

szzuz50
<0. (18)

At the punch edge we need to haveszzuz50,r 5a
<0. From Eq.

~12! and noting

2F1S 1

2
,2

11a

2
;
12a

2
;1D52

Ap

2
•~11a!•

GS 2
11a

2 D
GS 2

a

2 D ,

we have

(
a50

an

~11a!•aa•

GS 21a

2 D
GS 31a

2 D aa>0. (19)

If the contact is complete and the pressure at the punch ed
zero which is the condition for critical complete contact, the f
lowing condition has to be satisfied:

(
a50

an

~11a!•aa•

GS 21a

2 D
GS 31a

2 D aa50. (20)

4 Solutions for Some Special Cases

4.1 Flat-Ended Punch. When f (r )5a0 (0<r<a), we
have

szzuz50
52

a0

p
•

E

12n2 •
1

Aa22r 2
, (21)

which is the same as Boussinesq’s solution and there is a sq
root singularity at the punch edge.

4.2 One-Half Power Punch. In this case, punch vertica
displacement field is defined asf (r )5a01a1/2r

1/2 (0<r<a).
When

a0

G~1!

GS 3

2D 1
3

2
•a1/2•

GS 5

4D
GS 7

4D •a1/2>0, (22)
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szzuz50
52

a0

p
•

E

12n2 •
1

Aa22r 2
1

3

4Ap
•

E

12n2 •a1/2•

GS 5

4D
GS 7

4D
•FS r ,

1

2D (23)

where

FS r ,
1

2
D 5

3Ap

4
•

GS 2
3

4
D

GS 2
1

4
D

r 21/2

2
a3/2

r 2 F 1

A12
r 2

a2

22F1S 1

2
,2

3

4
;
1

4
;

r 2

a2D G .

(24)

Figure 2 shows the pressure distributions for a punch with rad
1 and profilef (r )5a020.001r 1/2 under different depth of inden
tation a0 . When a050.001311, it is critical complete contac
There is a singularity at the tip when the indentation depth is
more than the one for critical complete contact. There will
singularities both at the tip and at the edge~square-root singular-
ity! when the indentation depth is greater than the one for crit
complete contact.

4.3 Conical Punch. In this case, punch vertical displace
ment field is defined asf (r )5a01a1r (0<r<a).

When

a0

G~1!

GS 3

2D 12a1

GS 3

2D
G~2!

a.0, (25)

Fig. 2 One-half power punch. The pressure is normalized with
respect to ÀEÕ1Àn2.
Transactions of the ASME



o

-
i

l

ius
-
t.
han
re-
ater

-

szzuz50
5

1

2Ap
•

E

12n2 •a1•2•

GS 3

2
D

G~2!
•F1

2
lnS a1Aa22r 2

a2Aa22r 2D G
1

1

2Ap
•

E

12n2 •F a0

a

G~1!

GS 3

2
D 12a1

GS 3

2
D

G~2! G
•F a2

r 2 SA12
r 2

a22
1

A12
r 2

a2
D G . (26)

There is a square-root singularity at the punch edge and a l
rithmic singularity at the punch tip.

For critical complete contact, a0G(1)/G(3/2)
12a1G(3/2)/G(2)a50 and szzuz50

5a1/4•E/12n2
• ln(a

1Aa22r 2/a2Aa22r 2). It leads to the same solutions as those
Love @7# and Sneddon@8#. At the punch edge, pressure drops
zero and there is a logarithmetric singularity at the punch tip.

Fig. 3 shows the pressure distributions for a conical punch w
radius 1 and profilef (r )5a020.001r under different depth of
indentationa0 . Whena050.001570, it is critical complete con
tact. There is a logarithmetric singularity at the tip when the
dentation depth is no more than the one for critical complete c
tact. There will be singularities at both the tip~logarithmetric
singularity! and the edge~square-root singularity! when the inden-
tation depth is greater than the one for critical complete conta

4.4 Three-Half Power Punch. In this case, punch vertica
displacement field is defined asf (r )5a01a3/2r

3/2 (0<r<a).
When

a0

G~1!

GS 3

2D 1
5

2
•a3/2•

GS 7

4D
GS 9

4D •a3/2>0, (27)

Fig. 3 Conical punch. The pressure is normalized with respect
to ÀEÕ1Àn2.
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szzuz50
52

a0

p
•

E

12n2 •
1

Aa22r 2
1

5

4Ap
•

E

12n2 •a3/2•

GS 7

4D
GS 9

4D
•FS r ,

3

2D (28)

where

FS r ,
3

2
D 5

5Ap

4
•

GS 2
5

4
D

GS 2
3

4
D r 1/2

2
a5/2

r 2 F 1

A12
r 2

a2

22F1S 1

2
,2

5

4
;2

1

4
;

r 2

a2D G .

(29)

Fig. 4 shows the pressure distributions for a punch with rad
1 and profilef (r )5a020.001r 3/2 under different depth of inden
tation a0 . When a050.001797, it is critical complete contac
There is no singularity when the indentation depth is no more t
the one for critical complete contact; but there will be a squa
root singularity at the edge when the indentation depth is gre
than the one for critical complete contact.

4.5 Parabolic Punch. In this case, punch vertical displace
ment field is defined asf (r )5a01a2r 2 (0<r<a).

When

a0•
G~1!

GS 3

2D 13a2•
G~2!

GS 5

2D •a2.0, szzuz50

52
1

2Ap
•

E

12n2 •F G~1!

GS 3

2D a0

1

Aa22r 2

13
G~2!

GS 5

2D a2

2r 22a2

Aa22r 2G (30)

Fig. 4 Three-half power punch. The pressure is normalized
with respect to ÀEÕ1Àn2.
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there is a square-root singularity at the punch edge.
When

a0•
G~1!

GS 3

2D 13a2•
G~2!

GS 5

2D •a250,

we have

szzuz50
5

4

p
•

E

12n2 •a2•Aa22r 2. (31)

The pressure drops to zero at the punch edge and the soluti
the same as Hertz’s.

Figure 5 shows the pressure distributions for a parabolic pu
with radius 1 and profilef (r )5a020.001r 2 under different depth
of indentationa0 . Whena050.0020, it is critical complete con
tact. There is no singularity when the indentation depth is no m
than the one for critical complete contact. There will be a squa
root singularity at the edge when the indentation depth is gre
than the one for critical complete contact.

5 Discussions
The solutions obtained in this paper can be the basis for find

contact pressure between two smooth surfaces with arbit
shape profile.

For the nanoindentation using an axisymmetric indenter, th
solutions will provide a good theoretical basis for interpreting
load-displacement curve and evaluating Young’s modulus
Poisson’s ratio.

For punch displacement profile in the formula off (r )5a0

1a2mr 2m ~m is positive integer!, the pressure distribution will no
have singularities when the indentation depth is not more than
one for critical complete contact and will have a square-root s
gularity at the punch edge when the indentation depth is gre
than the one for critical complete contact.

For punch displacement profile in the formula off (r )5a0

1a2m21r 2m21 ~m is positive integer!, the pressure distribution
will always have a logarithmetric singularity at the punch tip a
will have a square-root singularity at the punch edge when
indentation depth is greater than the one for critical complete c
tact.

It should be emphasized that the solution is only valid when
contact region is a simply connected domain. When a gen

Fig. 5 Parabolic punch. The pressure is normalized with re-
spect to ÀEÕ1Àn2.
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punch profile is considered such asf (r )5(a50
an aar a, one

should first investigate if the contact area is simply connec
before using the presented solution.

The derived solution can be the basis for further investigat
of the indentation of elastic half-space when the interface frict
is considered.
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Appendix
Listed here are the identities used in the derivation which

be obtained by using the symbolic manipulation programMATH-
EMATICA:

1. E
0

t r 11k

At22r 2
dr5

Ap

2
•

GS 21k

2 D
GS 31k

2 D t11k

2. E
r

a t11k

At22r 2
dt5

Ap

2
•

GS 2
11k

2 D
GS 2

k

2D r 11k

1
a11k

11k
•2F1S 1

2
,2

11k

2
;
12k

2
;

r 2

a2D
3.

]

]r
F 2F1S 1

2
,2

11k

2
;
12k

2
;

r 2

a2D G
52

11k

r F 1

A12
r 2

a2

22F1S 1

2
,2

11k

2
;
12k

2
;

r 2

a2D G
4. E

0

aF 1

A12
r 2

a2

22F1S 1

2
,2

11k

2
;
12k

2
;

r 2

a2D
r

G
dr

5
1

11k
1

Ap

2
•

GS 2
11k

2
D

GS 2
k

2
D .
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1 Introduction
Structures such as nuclear reactors, aircraft gas turbine pro

sion engines, etc., operate in high levels of loads and tempera
It is essential, therefore, for the design of these structures, to
dict the inevitable accumulation of inelastic strains through
their life.

The complete response of a structure, which is subjected
given mechanical loading and exhibits inelastic time independ
~plastic! and inelastic time-dependent~creep! behavior, is quite
complex. The reasons of the complexity are the laborious
often numerically unstable time-stepping calculations that hav
be performed following the exact loading history.

When the loading is highly regular, i.e., it is either constant
cyclic, much of the complexity of the inelastic response is co
fined to an initial transient stage. It is very frequently true that
stresses and the strain rates tend towards a steady or a c
pattern. If this pattern develops early enough, then it may w
suffice to assess the complete behavior with perhaps a very
ited time-stepping analysis at the early stages of the applicatio
the loading.

The methods that seek to find this stress pattern right from
start of the calculations are called simplified methods. Th
methods, not only arrive at the steady-state stress pattern m
quicker than full time-stepping analyses, but also provide a m
better insight into the inelastic response of a structure. W
known examples of such methods, with plastic behavior o
present, are the limit and shakedown analyses of structures.

For elevated temperature conditions the effects of creep mus
taken into account. Leckie and Ponter@1# proved theoretically and
verified experimentally~@2#! that, when the level of cyclic loading
is below n/(n11) of the elastic shakedown loading, wheren is
the creep index in the power creep law, creep effects are the d
nant ones and plasticity may be neglected.

When only creep effects are present, Ponter@3# developed a
simplified method that may be applied to loads having a v
short period cycle. It is natural, then, to assume, that there is
time for any stress redistribution to take place inside a cy
Keeping, therefore, the residual stress constant inside the cycl
iterative procedure was then set up, which updates the resi

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan
2001; final revision, Aug. 6, 2001. Associate Editor: M.-J. Pindera.

Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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stress by satisfying equilibrium and compatibility at the end of
cycle. The process stops when there is no more change in
values of the residual stresses. Examples of applications to var
structures have been presented by Ponter and Brown@4#.
Spiliopoulos@5# proved that a fictitious cycle period may be us
so that the rate of convergence improves substantially.

When an engineer, though, faces the problem of the long-t
structural response of a cyclically loaded structure, he can
know, in advance, whether the cycle is short or not. There i
need, therefore, to estimate this response in a simple way, reg
less the cyclic duration, without having to resort to time-stepp
calculations.

In this work a new simplified method, originally proposed f
application to a simple structure~@6#!, is developed. This method
may be applied to any structure which is subjected to a cy
loading of any period. The main ingredient of the method is
time decompositon of the unknown residual stress distribut
into Fourier series. Thus the problem is converted to a problem
evaluating the Fourier coefficients of the various terms of
series. These coefficients may be calculated in an iterative w
using the time derivatives of the residual stresses to which th
coefficients are shown to be directly connected. By satisfying e
librium and compatibility, these derivatives may be calculated
discrete time points inside the cycle. An update of the Fou
coefficients then takes place by numerically integrating over
cycle. The iterations stop when no more significant change in t
values, within a specified tolerance, takes place. In order for
sequence of iterations to be convergent, a special acceleration
merical scheme is used. The whole procedure is formulated wi
the framework of the finite element method and examples of
plication to one and two-dimensional structures are included
the paper.

2 The Steady Cyclic Stress State
Let us assume that a structure is subjected to a cyclic mech

cal loading of periodT:

P~ t1T!5P~ t !. (1)

In response to this loading, the structure develops a stress
tems i j (t), which may be decomposed into two parts: Assumin
completely linear elastic material behavior, the first part is a cyc
elastic stresss i j

el(t) that equilibrates the cyclic loading that i
applied, and the second part is a self-equilibrating stress sys
r i j (t) due to the inelasticity that creep induces in the structu
Thus one can write

s i j ~ t !5s i j
el~ t !1r i j ~ t !. (2)

3,

is T.
on,
he
002 by ASME Transactions of the ASME
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The strain rates, in the same way, may also be decomposed
two termsėi j

el and ė i j r :

ė i j 5ėi j
el1 ė i j r 5ėi j

el1 ė i j r
el 1 ė i j r

cr . (3)

In the above equation the residual strain rate term has b
itself decomposed into elastic and creep parts.

The elastic strain rates are related to their corresponding s
rates by

ėi j
el5Ci jkl ṡkl

el

(4)
ė i j r

el 5C
i jkl

ṙkl

with Ci jkl being the tensor of the elastic constants.
For the creep component, Norton’s viscous power law is

sumed to hold

ė i j r
cr 5

l

n11

]f

]s i j
(5)

wheref is a strictly convex creep surface.
For two different states of stresss i j ands i j * , the correspond-

ing creep strain rates satisfy the Drucker’s postulate of stab
~@7#!:

~s i j 2s i j * !~ ė i j r
cr 2 ē i j r *

cr
!>0. (6)

The above postulate has been used by Frederick and Armst
@8# to prove the existence of a steady cyclic stress state, which
be stated as follows~Gokhfeld and Cherniavsky@9#!:

‘‘At cyclic loading of a structure made of Drucker’s materi
the stresses and the strain rates gradually stabilize to remain
altered on passing to the next cycle.’’

The above theorem states that after many applications of
load cycless i j (t1T)→s i j (t) and since the elastic stress is itse
cyclic: r i j (t1T)→r i j (t).

It can also be proved~@9#! that the stress distribution in th
steady cycle is unique and does not depend on any initial sta
the structure.

3 Fourier Decomposition of Residual Stresses
In order to calculate, therefore, this cyclic stress distribution

is sufficient to compute the residual stress distribution of the
clic stress stater i j (t). Since this stress also becomes periodic
may be decomposed in its Fourier series over the period of lo
ing, as this can be done for any periodic function~see, for ex-
ample, Tolstov@10#!:

r i j ~ t !5
a0

2
1(

k51

` S akcos
2kpt

T
1bksin

2kpt

T D (7)

where the coefficientsa0 , ak andbk , k51,2, . . . arecalled the
Fourier coefficients of the Fourier series. The problem therefor
now transformed to evaluate these coefficients. In a classical F
rier analysis problem these coefficients can be evaluated if
function is known. In our case, though, it is the functionr i j (t) we
seek to find. Nevertheless, let us differentiate Eq.~7! with respect
to time. Then we get

ṙ i j ~ t !5
2p

T (
k51

` H ~2kak!sin
2kpt

T
1kbkcos

2kpt

T J . (8)

From the above equation we observe that the Fourier co
cientsak andbk, k51,2, . . . appear also in the expansion of th
time derivative of the residual stresses. Making use of the
thogonality properties of the trigonometric functions we can
expressions that may be used to evaluate these coefficien
terms of the time derivativeṙ i j (t):

ak52
1

kpE0

T

ṙ i j ~ t !sin
2kpt

T
dt (9)
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bk5
1

kpE0

T

ṙ i j ~ t !cos
2kpt

T
dt. (10)

On the other hand, if we integrateṙ i j (t) over the periodT, we
get

E
0

T

ṙ i j ~ t !dt5r i j ~T!2r i j ~0!

5S a0~T!

2
1(

k51

`

ak~T!D 2S a0~0!

2
1(

k51

`

ak~0!D
(11)

where use of the expression~7! was made at the beginning and
the end of the cycle period. Equation~11! may be used to evaluat
the coefficienta0 .

If one satisfies equilibrium and compatibility at some discre
time points inside the cycle, the time derivatives of the resid
stresses themselves may be expressed in terms of the Fourie
efficients we seek to find. Thus Eqs.~9!, ~10!, and ~11! may be
used in an iterative manner which, in case of convergence,
lead to the values of the Fourier coefficients within a specifi
tolerance.

4 Formulation Using Finite Elements
The way to evaluate the time derivatives of the residual stres

may be done, for any structure, using the finite element meth
To this end our structure is discretized into a finite number
elements which are assumed to be interconnected at a dis
number of nodal points situated on their boundaries.

In the sequel, we denote vectors and matrices by bold lette
Let us denote, byṙ , the vector of the time rates of the displac

ments of the nodal points of the discretized structure at some
t. The strain ratesė at the Gauss integration points are given
terms of ṙ by

ė5Bṙ . (12)

Using the discretized form of Eqs.~2!–~5! one may write solv-
ing in terms of the residual stress rates, also at the Gauss po

ṙ5D~ ė2ėel2 ėr
cr! (13)

whereD is the elasticity matrix and consists of the inverse ter
of Ci jkl .

Since the strain rates are compatible and the residual stress
are self-equilibrated, from the principle of virtual work~P.V.W!,
we may obtain

E
V
ė8ṙdV50 (14)

where‘‘ 8’’ denotes the transpose of a vector or matrix.
After the substitution of~12! and ~13!, in ~14!, we may write

ṙ 8E
V
B8D~Bṙ2ėel2 ėr

cr!dV50 (15)

and since this equation must hold for anyṙ ,

S E
V
B8DBdVD ṙ5E

V
B8ṡeldV1E

V
B8Dėr

crdV (16)

or

Kṙ 5Ṙ1E
V
B8Dėr

crdV (17)

whereK is the stiffness matrix of the structure andṘ is the nodal
vector of the time rate of the given loading.
MARCH 2002, Vol. 69 Õ 149



t

t

f

o

s
c

h
fi

d

e

one
o re-

d to
cond
o-
ing

in

pa-

yield

pli-

um
e 3

e
g. 3.
3–2
ely.

The
ing
ve
ical
y
ress-
l to
5 Numerical Procedure
The form of the expressions~9!, ~10!, and ~11! allow us to

evaluate the Fourier coefficients of the various terms of the F
rier series~7! in an iterative manner, since an update of the
terms may be provided at the end of the cycle, after integra
over its periodT.

The elastic problem is solved first and the elastic stresses,
to the applied loading, at the Gauss pointssel(t) are determined
at discrete time points inside the cycle.

Initial values fora0
(0) , ak

(0) ,bk
(0) , k51,2, . . . , which are also

assigned at the same Gauss points, are given~normally zero!.
Using the discretized form of~7!, the residual stressesr(0)(t) at
the Gauss points may be evaluated for any of the discrete
points inside the cycle. Creep strain rates at the Gauss points
at the same time points may then be determined with the aid o
discretized form of~5!. After solving the system of Eqs.~17!,
using~12! and~13! the residual stress ratesṙ(0)(t) may be deter-
mined at the Gauss points and at the same time points. It sh
be noted here that the initial decomposition of the stiffness ma
that was performed for the solution of the elastic problem, is u
throughout the whole computation. An update of the Fourier
efficients may then take place using the discretized form of~9!,
~10!, and~11!, by numerically integrating over the time periodT.

More specifically, if we denote by~m! the current iteration we
can write the following expressions:

gk
~m!52

1

kpE0

T

@ ṙ~m!~ t !#sin
2kpt

T
dt

uk
~m!5

1

kpE0

T

@ ṙ~m!~ t !#cos
2kpt

T
dt (18)

s0
~m!5

1

2
a0

~m!2(
k51

`

gk
~m!1(

k51

`

ak
~m!1E

0

T

@ ṙ~m!~ t !#dt.

In order for convergence to take place, an indirect update, ba
on a special acceleration procedure for nonlinear systems of e
tions ~Isaacson and Keller@11#!, is used:

ak
~m11!5wgk

~m!1~12w!ak
~m!

bk
~m11!5wuk

~m!1~12w!bk
~m! (19)

a0
~m11!

2
5ws0

~m!1~12w!
a0

~m!

2

wherew is an acceleration and convergence parameter.
The discretized form of the sum inside the brackets, of the fi

term of the right-hand side of Eq.~11!, is an expression for the
residual stress at the end of the cycle. The Euclidean norm of
residual stress vector may serve as a means to stop the iter
procedure, i.e., the iterations may stop when

ir~m11!~T!i22ir~m!~T!i2

ir~m11!~T!i2
<es (20)

wherees is a pre-specified error tolerance.
The proposed numerical scheme has a linear rate of con

gence. The value ofw may be chosen, in a trial and error fashio
so as to produce a fast and uniform convergence of the w
procedure something which is easily detected in the very few
iterations. Then this value is kept constant throughout the wh
history of the iterations. If one performs an error analysis~@11#!,
the ‘‘best’’ value of the parameterw at each iteration may be foun
by evaluating the derivatives, with respect to the Fourier coe
cients, of the various functions involved. These derivatives, ho
ever, cannot be found explicitly and an implicit evaluation of the
is time-consuming because of the amount of the Fourier co
cients which may increase considerably depending on the num
of terms of the Fourier series considered. Due to this fact
150 Õ Vol. 69, MARCH 2002
ou-
se
ing

due

ime
and
the

uld
trix
ed
o-

sed
qua-

rst

this
ative

ver-
n,
ole
rst
ole

ffi-
w-
m
ffi-
ber

the

evaluation of the Jacobian of the system of Eq.~18! becomes quite
a cumbersome task and thus the conversion of the scheme to
which has almost a quadratic convergence does not seem t
duce the computational effort.

6 Examples of Application
The numerical procedure that was described above is applie

three examples, the first one being a one-dimensional, the se
one a two-dimensional axisymmetric, and the third a pure tw
dimensional one. All the structures were subjected to a load
whose variation with time has the form

P~ t !5P0 sin2S pt

T D . (21)

The time variation of the load over four cycles can be seen
Fig. 1.

The equivalent to~5! uniaxial creep law is given by

ėcr5Ksn. (22)

The structures were assumed to be made of steel with its
rameters listed in Table 1.

The maximum values of the applied loadingP0 were chosen so
that the maximum elastic stress does not exceed the steel
stress of 300 Mpa.

6.1 Pin–jointed Framework. The pin-jointed framework
shown in Fig. 2 was chosen to serve as a first example of ap
cation of the proposed method~@12#!. All the elements of the truss
have an equal cross-sectional area ofA51 cm2.

A period T5100 hrs was considered whereas the maxim
value of the concentrated loading, that was applied at nod
downwards, was taken asP0530 kN.

The variation of the cyclic residual stress distribution with tim
over a cycle for the various truss elements can be seen in Fi
Due to the structure’s symmetry results for elements 2–4 and
are identical to the ones of elements 1–3 and 1–4, respectiv

6.2 Thick Cylinder. A thick cylinder of an internal radius
of 10 cm and an external one of 20 cm is considered next.
cylinder is subjected to an internal pressure that is not vary
spatially. Since both structure and loading is axisymmetric, fi
axisymmetric finite elements were used to discretize a vert
section of the cylinder~Fig. 4!. In the same figure the boundar
conditions are also shown. The material was assumed incomp
ible and, for this reason, Poisson’s ratio was taken equa
n50.4999. Eight-noded isoparametric elements with 232 Gauss

Fig. 1 Load variation with time over four periods used in the
examples

Table 1 Material constants

Young’s modulus: E5.213105 kN/cm2

Poisson’s ratio: n50.4999
Constant in Norton’s law: K5.6831028 ~SI units!
Index in Norton’s power law: n53.0
Transactions of the ASME
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integration points were used, which showed no ‘‘locking’’ ph
nomenon due to the assumed incompressibility of the materia

To check the correctness of the computer program that
written following the numerical procedure that was described
the previous sections, a constant in-time load was considered
and the results were found in complete agreement with the
lytical results~Kraus @13#!.

The cyclic loading case was considered next. The cycle pe
was taken to beT5100 hrs., whereas the maximum value of loa
ing was taken asP0520 kN/cm2. Results are reported at th
nearest to the load Gauss integration points 1 and 2~shown in Fig.
4!. In Fig. 5 one can see the variation inside a cycle of the ra
stress assuming a completely elastic behavior and the variatio
the same stress in its cyclic steady-state. It is easily realized
inelastic creep has a small effect on the radial stress. This is
the case with the hoop stress at the same points~Fig. 6!. In Fig.

Fig. 2 Pin-jointed framework

Fig. 3 Cyclic steady-state residual stress distribution in the
truss elements of the six-bar structure inside a cycle

Fig. 4 Finite element discretization of thick cylinder
Journal of Applied Mechanics
-
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6~a! one can see the variation of the cyclic steady-state h
residual stress inside a cycle. This residual stress, induced
creep, causes a significant effect on the elastic stress resulting
downward shift when the cyclic steady-state condition is reac
while, at the same time, the point of the occurrence of the ma
mum stress moves towards the left~Fig. 6~b!!.

Fig. 5 Distribution of the cyclic steady-state radial stress in-
side a cycle for elastic and inelastic behavior at Gauss points 1
and 2

Fig. 6 Distribution of the cyclic steady-state hoop stress in-
side a cycle at Gauss points 1 and 2; „a… residual stress, „b…
total stress for elastic and inelastic behavior
MARCH 2002, Vol. 69 Õ 151
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6.3 Square Plate with a Hole. The last example of appli-
cation is a plane stress concentration example of a square
with dimensions 20320 cm and having a circular hole in it
middle of a diameter of 2 cm. The loading is applied in equal pa
right at the two vertical edges of the plate. Due to the symmetr
the structure and the loading one quarter of the structure is
analyzed witha510 cm andb51 cm. Ninety-eight eight-noded
isoparametric elements with 333 Gauss integration points wer
used for the finite element discretization~Fig. 7!.

Because of the dimensions of the plate and the hole this p
lem approaches the infinite plate solution and the elasticxx-stress

Fig. 7 Finite element discretization of a quarter of a plate

Fig. 8 Distribution of the cyclic steady-state xx-stress inside a
cycle at Gauss point 1; „a… residual stress „b… total stress for
elastic and inelastic behavior
152 Õ Vol. 69, MARCH 2002
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at the Gauss integration point 1 shown in Fig. 7 turns out to
2.54 P. This point is the nearest integration point to the corn
where the maximum longitudinal elastic stress should be appr
mately equal to 3P.

The maximum value of the cyclic loading was taken asP0
510 kN/cm. The cyclic steady-state residual stress distribut
inside a cycle at the same integration point can be seen in
8~a!, whereas the corresponding total stress distribution can
seen in Fig. 8~b!, for elastic and inelastic behavior. As it may b
observed, inelasticity causes a total translation of the elastic s
distribution downwards without changing the time point where
maximum stress occurs.

The numerical procedure was then applied using the same l
ing but for a cycle period ofT51 hr. This period turned out to be
a ‘‘short cycle’’ period since the residual stresses in the stea
state were found to be constant inside the cycle with the valu
the xx-residual stress at the Gauss integration point 1 being
proximatelyrxx525.77 kN/cm.

The results of the two last examples were found in good ag
ment with the ones obtained by a time-stepping general purp
finite element program~ABAQUS @14#!. An explicit time integra-
tion scheme was adopted and in order to get higher accuracy
time-stepping program had to go through many time increment
get near the steady-state solution especially for the stress con
tration problem.

For all the examples that were presented above, based
good choice of the parameterw, the cyclic steady-state wa
reached in a few iterations, presenting no numerical instability
very few number of terms of the Fourier series generally prov
sufficient. A limited number of time points inside the cycle a
needed, mainly to properly describe the time variation of the lo
The stiffness matrix that is used for the time derivative evaluat
of the residual stresses at these points needs to be formulated
decomposed only once; thus the whole procedure turns out t
quite an efficient one.

7 Concluding Remarks
A new simplified method that may be used to estimate the lo

term nonlinear creep behavior of structures under cyclic load
presented. The method removes the short cycle assumptio
existing simplified methods and can be applied to cyclic loads
any period. It is based on decomposing the sought resid
stresses in the steady-state in Fourier series. The various term
the Fourier series are evaluated in an efficient way through
iterative process. The whole procedure not only avoids the v
laborious time stepping computations and leads quickly to
final cyclic state, but also provides a good insight on the eff
that inelasticity has on the structure.
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A Boundary Element Method
Without Internal Cells for
Two-Dimensional and
Three-Dimensional Elastoplastic
Problems
In this paper, a new and simple boundary element method without internal cells is
sented for the analysis of elastoplastic problems, based on an effective transform
technique from domain integrals to boundary integrals. The strong singularities app
ing in internal stress integral equations are removed by transforming the domain inte
to the boundary. Other weakly singular domain integrals are transformed to the boun
by approximating the initial stresses with radial basis functions combined with polyn
als in global coordinates. Three numerical examples are presented to demonstra
validity and effectiveness of the proposed method.@DOI: 10.1115/1.1433478#
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1 Introduction
The conventional boundary integral equations dealing with

elastic problems include domain integrals associated with in
stresses~strains! ~Swedlow and Cruse@1#, Mukherjee@2#, Telles
and Brebbia@3#, and Banerjee and Raveendra@4#!. To evaluate the
domain integrals, the yield region~nonlinear region! requires that
it be discretized into internal cells and that the initial stresse
cells’ nodes be determined. Therefore, integral equations for in
nal stresses are introduced. Since domain integrals involved in
internal stress integral equations are strongly singular when
source point is one of the cell’s nodes, particular treatmen
required. One of the challenging tasks in the inelastic bound
element method is to remove the strong singularities appearin
the stress domain integrals. Towards this end, substantial e
has been expended in this area, such as the works of Ricar
@5#, Mendelson and Albers@6#, Telles @7#, Lee and Fenner@8#,
Chandra and Saigal@9#, Guiggiani et al.@10#, Dallner and Kuhn
@11#, Okada and Atluri@12#, Huber et al.@13#, and Aliabadi and
Martin @14#. A detailed review can be found in the article by Ga
and Davies@15#. However, until recently the first boundary ele
ment method computer code~BEMECH! dealing with two-
dimensional and three-dimensional elastoplastic problems
been released by Gao and Davies@16# based on an effective re
moval of the strong singularities~@15#!. In this code, as in the
literatures listed above, the yield region of a problem is d
cretized into internal cells for evaluation of the domain integr
associated with the initial stresses. Although the cell integra
scheme can give accurate results, the discretization of the inte
region eliminates, to a certain extent, the advantage of the bo
ary element method in that only the boundary of the probl
needs to be discretized into elements.

During the past two decades, various techniques have bee
veloped to overcome the deficiency of the domain integrals
pearing in problems with body forces and time-dependent ter

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
12, 2001; final revision, October 25, 2001. Editor: M. Ortiz. Discussion on the pa
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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The most popular technique is the so-calleddual reciprocity
method~DRM! proposed by Nardini and Brebbia in 1982@17# for
solid dynamics. This method, approximating the body force eff
quantities using a series of prescribed basis functions, transfo
the domain integrals to the boundary by employing particular
lutions that are derived from the differential operator for the
basis functions. Since the publication of the first book on
DRM by Partridge et al. in 1992,@18# the method has been exten
sively used by means of using theradial basis functions~RBF!
~e.g., Zhu and Zhang@19#, Golberg et al.@20#, Power and Mingo
@21#, Cheng et al.@22#!. More recently, Sensale et al.@23# suc-
cessfully applied the DRM to solve viscoelastic problems us
the pseudo-surface tractionandpseudo-body forceapproach.

In order to avoid the need for domain discretization in the
elastic boundary element method, a method called theparticular-
integral approachwas proposed by Henry and Banerjee@24#. In
this approach, the solutions are decomposed into two parts—
complementary and particular solutions~see also Kane@25#!. The
complementary solutions satisfy the elastic boundary elem
method equations, while the particular solutions are related to
initial stresses by using a Galerkin vector which is approxima
with specified global interpolation functions. The equations est
lished using this method do not include any domain integral, so
internal cells are needed. However, to date, there are no st
benchmark tests and engineering applications to demonstrat
potential.

Recently, Ochiai and Kobayashi@26# presented an improved
multiple-reciprocity boundary element method to transform
domain integrals to the boundary. Since both the initial stres
and the kernel functions are operated using Laplace equations
resulting boundary integral equations are very complicated.

In this paper, an effective transformation method, called
radial integration method, from domain integrals to boundary in
tegrals is presented without using any particular solution a
Galerkin vector. Based on this method, a strongly singular dom
integral used to isolate the strong singularities in the internal st
integral equations is analytically transformed to the boundary.
remaining weakly singular domain integrals that involve the u
known initial stresses are transformed to the boundary by appr
mating the initial stresses with the RBF combined with polynom
als in global coordinates as commonly used in the DRM. Fina
one numerical example is presented to verify the proposed tr

ry
per
nical
ted
002 by ASME Transactions of the ASME
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formation technique, while other two are provided to demonstr
the effectiveness of the elastoplastic boundary element me
described in this paper.

2 The Radial Integration Method for Transforming
Domain Integrals to the Boundary

For a two-dimension domainV bounded by a boundaryG, de-
fine a Cartesian coordinate system (x1 ,x2) and a polar coordinate
system (r ,u) with the origin at the source pointp. The relation-
ships between the Cartesian and polar coordinate systems a

H r 15x12x1
p5r cosu

r 25x22x2
p5r sinu

0<u<2p (1)

wherexi
p represents the Cartesian coordinates at the source p

p andr is the distance between the source point and a field po
A differential domaindV in the polar coordinate system can b
expressed as

dV5rdrdu. (2)

Referring to Fig. 1, when the field point is located on the bou
ary, the following relationship can be obtained:

rdu5dG cosw5dG
r ini

r
(3)

wherew is the angle between the normals of the differential
rdu with radiusr and the differential boundarydG with outward
normalni . The summation convention is adopted for the repea
subscripti .

Using Eq.~3!, Eq. ~2! can be written for boundary field point
as

dV5rdrdSI (4)

where

dSI5
1

r

]r

]n
dG (5)

in which, the following equations are used:

]r

]n
5r ,ini (6)

r ,i5
]r

]xi
5

r i

r
. (7)

For three-dimensional problems, through defining a spher
coordinate system, a similar equation can be obtained~@15#! as

dV5r 2drdSI (8)

where

dSI5
1

r 2

]r

]n
dG. (9)

Fig. 1 Relationship between differential elements rd u and d G
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Equations~6! and ~7! are still valid for the three-dimensiona
problems with the understanding that the subscripti takes values
from 1 to 3.

Equations~4! and ~8! have been used to remove the stro
singularities appearing in the inelastic boundary element met
~e.g., @16#!. In this paper, they are used to transform a dom
integral to the boundary. Considering a general functionf (x) with
x representing (x1 ,x2 ,x3), its domain integral can be performe
using Eqs.~4! and ~8! as follows:

E
V

f ~x!dV5E
S
H E

0

r (Q)

f r b21drJ dSI~Q!5E
S
F~Q!dSI~Q!

(10)

where

F~Q!5E
0

r (Q)

f r b21dr. (11)

In the above equations,b52 for two-dimensions andb53 for
three-dimensions, and the symbolQ implies that the correspond
ing variables take values on the boundaryG ~see Fig. 2!.

Substituting Eqs.~5! and ~9! into Eq. ~10! leads to

E
V

f ~x!dV5E
G

1

r b21

]r

]n
F~Q!dG~Q!. (12)

Now the domain integral has been transformed into a bound
integral based on the radial integral~11!. It is noted that the
boundary integral in Eq.~12! is performed in the Cartesian coo
dinate system and the source point can be either a boundary
or an internal point.

For most cases, Eq.~11! can be analytically integrated. To d
this, the coordinatesx appearing in the functionf (x) should be
expressed in terms ofr using the following equations:

xi5xi
p1r ,i r (13)

r ,i r ,i51. (14)

It is important to note that the quantityr ,i is constantfor the radial
integral ~11!. For some complicated functionsf (x), Gaussian
quadrature formulas may be used for evaluation of the radial
tegral Eq.~11!. Experience shows that four Gauss points are s
ficient. To use the Gaussian quadrature formulas, the follow
variable transformation is required:

r 5
r ~Q!

2
j1

r ~Q!

2
~21<j<1! (15)

where j is the Gauss coordinate. Any domain integral can
transformed to the boundary by Eq.~12! with the use of the Gauss
quadrature to evaluate the radial integral~11!.

Fig. 2 Integration pattern along radial direction r
MARCH 2002, Vol. 69 Õ 155
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3 Boundary Integral Equations and Regularization
for Elastoplastic Problems

The direct boundary integral equations for elastoplasticity
be expressed in the incremental form~@15#! as

ci j ~P!u̇ j~P!1E
G
Ti j ~P,Q!u̇ j~Q!dG~Q!

5E
G
Ui j ~P,Q! ṫ j~Q!dG~Q!1E

V
Ei jk~P,q!ṡ jk

p ~q!dV~q!

(16)

whereTi j (P,Q) andUi j (P,Q) are the Kelvin fundamental solu
tions for tractions and displacements at a pointQ in the j th direc-
tion due to a unit load at pointP andEi jk(P,q) is the correspond-
ing strain kernel

Ei jk5
1

r b21 C i jk (17)

where

C i jk5
21

8p~b21!~12n!G
$~122n!~r ,kd i j 1r , jd ik!

2r ,id jk1br ,i r , j r ,k% (18)

In Eq. ~16!, ci j 51/2d i j for smooth boundary points andci j
5d i j for internal points. The strongly singular terms arising fro
the integration of the traction kernel are determined indirec
using the rigid-body~translation! condition. The stress incremen
ṡ i j at an internal pointp can be computed using

ṡ i j ~p!5E
G
Ui jk~p,Q! ṫ k~Q!dG~Q!2E

G
Ti jk~p,Q!u̇k~Q!dG~Q!

1E
V

Ei jkl ~p,q!ṡkl
p ~q!dV~q!1Fi j

s~ṡkl
p ! (19)

whereFi j
s (ṡkl

p ) are the free terms~e.g., Telles@7#, and Banerjee
and Davies@27#!, and

Ei jkl 5
1

r b C i jkl (20)

in which

C i jkl 5
1

4p~b21!~12n! @ ~122n!~d ikd l j 1d jkd l i 2d i j dkl

1bd i j r ,kr ,l !1bn~d l i r , j r ,k1d jkr ,l r ,i1d ikr ,l r , j1d j l r ,i r ,k!

1bdklr ,i r , j2b~b12!r ,i r , j r ,kr ,l# . (21)

The integrals in Eqs.~16! and ~19! should be interpreted in the
Cauchy principal value sense. After use of the cell subdivis
technique~@16#!, the weakly singular domain integral in Eq.~16!
involving the kernelEi jk is bounded, while the strongly singula
domain integral in Eq.~19! involving the kernelEi jkl is still sin-
gular, with order 1/r . Special integration techniques must ther
fore be adopted in order to make the integral bounded. To do
the domain integral in Eq.~19! can be written as

E
V

Ei jkl ~p,q!ṡkl
p ~q!dV~q!

5E
V

Ei jkl ~p,q!$ṡkl
p ~q!2ṡkl

p ~p!%dV~q!

1ṡkl
p ~p!S E

V
Ei jkl ~p,q!dV~q! D (22)
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whereṡkl
p (p) is the initial stress at the source pointp. Now the

first integral on the right-hand side of Eq.~22! is weakly singular
and can be evaluated by the cell subdivision technique, while
strong singularity is shifted to the second integral of the rig
hand side. Since the integration is carried out in the Cauchy p
cipal value sense, a small sphere~or circle for two-dimensional!
V« with radius« around the singular pointp and bounded by a
boundaryG« can be cut off. Thus, in terms of Eq.~20!, the radial
integral ~11! for the last integral in Eq.~22! becomes

F~Q!5 lim
«→0

E
«

r ~Q! 1

r b C i jkl r
b21dr

5 ln r ~Q!C i jkl 2 lim
«→0

$ ln « C i jkl %. (23)

And according to Eq.~12!, it follows that

E
V

Ei jkl ~p,q!dV~q!5E
G

1

r b21

]r

]n
ln r C i jkl dG

2 lim
«→0

E
G«

1

r b21

]r

]n
ln « C i jkl dG

5E
G
r

]r

]n
ln r Ei jkl dG

1 lim
«→0

ln «

«b21E
G«

C i jkl dG (24)

in which ]r /]n521 and r 5« have been used for the integra
over the spherical surface~or circle! G« . It can been shown tha
the last integral on the right-hand side of Eq.~24! is identical to
zero ~@15#!. Hence, Eq.~24! becomes

E
V

Ei jkl ~p,q! dV~q!5E
G
r

]r

]n
ln r Ei jkl dG. (25)

Now the strongly singular domain integral has been tra
formed into a boundary integral. Since the source pointp is lo-
cated inside the domain, no singularity occurs and stand
Gaussian quadrature formulas can be used to evaluate this
gral.

4 Transformation of Domain Integrals to Boundary
Using Approximation Functions

In the previous section, the last integral in Eq.~22! consisting
of the know functionEi jkl has been directly transformed into
boundary integral as shown in Eq.~25!. However, the first domain
integral on the right-hand side of Eq.~22! and the domain integra
in Eq. ~16! contain the unknown initial stressesṡ jk

p (q). The direct
transformation is infeasible. Following the idea successfully u
in the DRM ~Nardini and Brebbia@17#, and Partridge et al.@18#!,
this paper approximates the initial stress incrementsṡkl

p (q) by a
series of prescribed basis functions.

4.1 Approximation of Initial Stress Increments Using Aug-
mented Radial Basis Functions„RBFs…. It has been demon-
strated that the combination of theradial basis functions~RBF!
andpolynomialsin global coordinates can give satisfactory resu
~Partridge and Sensale@28#, and Golberg et al.@29#!. In this study,
linear, quadratic, and cubic polynomials are considered. Thus,
initial stresses can be approximated by

ṡkl
p ~x!5(

A51

NA

akl
A fA~x!1ckl

0 1(
i 51

b

ckl
i xi1(

i 51

b

(
j 5 i

b

ckl
i j xixj

1(
i 51

b

(
j 5 i

b

(
n5 j

b

ckl
i jnxixjxn (26)
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A5(
A51

NA

akl
A xi

Axj
A5(

A51

NA

akl
A xi

Axj
Axn

A50

(27)

whereNA is the total number of application points consisting
all boundary nodes and some selected internal points,akl

A , ckl
0 ,

ckl
i , ckl

i j , andckl
i jn are coefficients to be determined andxi

A denotes
the Cartesian coordinates at the application pointA. If quadratic
polynomial is used, neglect the terms associated withckl

i jn ; if lin-
ear polynomial is used, neglect the terms associated with bothckl

i jn

andckl
i j ; and if RBF only are used, only keep the terms associa

with akl
A . Four types of commonly used RBFsfA(x) ~e.g., Par-

tridge @30#! are listed in Table 1.
In Table 1,R is the distance from the application pointA, i.e.,

R5ix2xAi . For convenience, Eq.~26! can be expressed in
simple form as

ṡkl
p ~x!5(

s51

Ns

akl
s Fs~x!5$F~x!%T$akl% (28)

where the vectors$F(x)% and$akl% are arranged as follows:

$F~x!%T5$f1~x!,f2~x!, . . . ,1,x1 ,x2 ,x3 ,x1
2 ,x1x2 ,

. . . ,x1
3 ,x1

2x2 , . . . % (29)

$akl%
T5$akl

1 ,akl
2 , . . . ,ckl

0 ,ckl
1 ,ckl

2 ,ckl
3 ,ckl

11,ckl
12,

. . . ,ckl
111,ckl

112, . . . %. (30)

In Eq. ~28!, Ns5NA1Np with Np being the total number of poly
nomial terms. Table 2 displays the value ofNp for different types
of the polynomials.

To determine the coefficients in Eq.~30!, let x in Eq. ~28! take
values through all the application points. This providesNA equa-
tions. Then together with Eq.~27!, a set of algebraic equation
with the sizeNs result in ~in the matrix form!

$ṡkl
p %5@F#$akl% (31)

where$ṡkl
p % is a vector consisting of the initial stress compone

ṡkl
p at all application points. If no any two nodes share the sa

coordinates, the matrix@F# is invertible and thereby

$akl%5@F#21$ṡkl
p %. (32)

It is noted that, to ensure a healthy square matrix@F#, the number
of application points should be more than the number of the p
nomial terms, i.e.,NA.Np .

4.2 Transformation of Domain Integrals to the Boundary.
Substituting Eq.~28! into the domain integral in Eq.~16! and in
terms of Eq.~12!, it follows that

E
V

Ei jk~P,q!ṡ jk
p ~q!dV~q!5a jk

s E
G

1

r b21

]r

]n
Fi jk

s ~Q! dG~Q!

(33)

Table 1 Commonly used RBF fA„x …

Linear Cubic TPS Multiquadric

R R3 R2 ln R AR21c2

Table 2 The number „Np… of polynomial terms

RBF only Linear Quadratic Cubic

Two-dimensional 0 3 6 10
Three-dimensional 0 4 10 20
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where the summation convention is used for the repeated su
script s andFi jk

s is derived from Eqs.~11! and ~17!:

Fi jk
s ~Q!5E

0

r ~Q!

C i jk Fsdr5C i jkE
0

r ~Q!

Fsdr5C i jkFs~Q!.

(34)

Substituting Eq.~34! into ~33! and taking account of Eq.~17!, one
can obtain

E
V

Ei jk~P,q!ṡ jk
p ~q!dV~q!5a jk

s E
G
Ei jk

]r

]n
Fs~Q!dG~Q!.

(35)

Referring to the vector shown in Eq.~29!, Fs(Q) consists of the
following radial integrals:

Fs~Q!5E
0

r ~Q!

Fsdr

5

¦

E
0

r ~Q!

fAdr for s51 through NA ~36!

E
0

r ~Q!

dr5r for s5NA11

E
0

r ~Q!

xidr for linear polynomial ~37a!

E
0

r ~Q!

xixjdr for quadratic ~37b!

E
0

r ~Q!

xixjxndr for cubic. ~37c!

Using Eq.~13!, integrals~37a!–~37c! can easily be integrated a

E
0

r ~Q!

xidr5xi
pr 1

1

2
r ,i r

2 (38a)

E
0

r ~Q!

xixjdr5xi
pxj

pr 1
1

2
bi j r

21
1

3
r ,i r , j r

3 (38b)

E
0

r ~Q!

xixjxndr5xi
pxj

pxn
pr 1

1

2
gi jnr 21

1

3
hi jnr 31

1

4
r ,i r , j r ,nr 4

(38c)

where

bi j 5xi
pr , j1xj

pr ,i

gi jn5bi j xn
p1xi

pxj
pr ,n (39)

hi jn5bi j r ,n1xn
pr ,i r , j .

As for the integral shown in Eq.~36!, sincefA are explicit func-
tions of distanceR ~see Table 1!, first R needs to be expressed i
terms of r which is the distance from the source pointp to the
field point Q. Referring to Fig. 3, one can obtain

R5Ar 21sr1R̄2 (40)

where

s52r ,i R̄i

R̄5ixp2xAi5AR̄i R̄i (41)

R̄i5xi
p2xi

A .

In a similar manner, the first domain integral on the right-ha
side of Eq.~22! can easily be transformed into a boundary integ
by Eqs.~11!, ~12!, and~28! as follows:
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E
V

Ei jkl ~p,q!$ṡkl
p ~q!2ṡkl

p ~p!%dV~q!

5akl
s E

G
Ei jkl r

]r

]n
F̄s~Q! dG~Q! (42)

where

F̄s~Q!5E
0

r (Q) 1

r
$Fs2Fs~xp!%dr

5

¦

E
0

r (Q) 1

r
$fA2fA~xp!%dr for s51 through NA

0 for s5NA11

r ,i r for linear polynomial

bi j r 1
1

2
r ,i r , j r

2 for quadratic

gi jnr 1
1

2
hi jnr 21

1

3
r ,i r , j r ,nr 3 for cubic.

(43)

Although the radial integrals~36! and ~43! can be analytically
integrated for all the functions listed in Table 1 using relations
~40!, it is more convenient, as done in this study, to use Gaus
quadrature formulas to evaluate these integrals with the vari
transformation~15!.

After discretizing the boundaryG into elements, the trans
formed boundary integrals~35! and ~42! can be evaluated usin
the standard Gaussian quadrature formulas as the basic bou
integrals in Eqs.~16! and~19! are performed. The coefficientsakl

s

in Eqs. ~35! and ~42! can be expressed in terms of initial stre
increments by using Eq.~32!. Finally a system of equations sim
lar to that in the conventional elastoplastic boundary elem
method can be formed and solved with a Newton-Raphson it
tive scheme~see@15#!.

5 Numerical Examples
Three numerical examples are presented here. The first o

aimed to validate the transformation Eq.~12!, while other two are
used to demonstrate the effectiveness of the nonlinear boun
element method described in this paper.

5.1 Two-Dimensional Domain Integral Over a Nonconvex
Domain. Consider the following two-dimensional domain int
gral over a nonconvex domain as shown in Fig. 4.

I ~p!5E
V

b

r ~p,q!
dV (44)

wherer (p,q)5A(x2xp)21(y2yp)2 and

Fig. 3 Relationship between distances
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10x̄ȳ13 sin~ x̄p/2!cos~ ȳp/2!15ex̄21 ȳ2

2ȳ31Ax̄21 ȳ2ln~21 x̄1 ȳ!1cos~ x̄!1eȳ
(45)

in which x̄5x/L1 , ȳ5y/L2 , with L155 andL254 and the ori-
gin of the coordinate system~x,y! located at the bottom-left cor-
ner of Fig. 4. It is known that the weakly singular domain integr
~44! can be accurately computed using thecell-integrationscheme
~@16#! by discretizing the domain into internal cells. It may b
quite difficult to use existing methods to transfer the domain
tegral ~44! into a boundary integral. However, it is very easy
employ Eqs.~11! and ~12! to transform this integral into an
equivalent boundary integral as follows:

I ~p!5E
G

1

r ~p,Q!

]r

]n
F~Q! dG~Q% (46)

where

F~Q!5E
0

r (Q)

bdr. (47)

Sinceb is a very complicated function ofx andy, it is difficult to
integrate the radial integral~47! analytically. Instead, the function
F(Q) is computed numerically using the variable transformati
~15! and relationship~13!. To compute the integral~46!, the
boundary of the domain is approximated using 112 linear l
elements with 112 boundary nodes~see Fig. 4!.

Table 3 shows the computed results at four selected bound
nodes and four internal nodes. For comparison, the results f
the cell-integration scheme are also listed there.

From Table 3 we can see that the results from thecurrent trans-
formed boundary integral are in excellent agreement with the
sults from the traditional cell-integration technique. The small d
crepancy at some points may be due to the roundoff error
computation. The computational time spent in thecurrentmethod
is 42 percent of the cell-integration technique.

5.2 Three-Dimensional Cube Under Uniaxial Tension.
The second example deals with a cube, with dimensions of
310310, subjected to a uniformly distributed load (p51) on the
top. The bottom is fixed in the vertical direction and free in oth
directions. The material satisfies theVon Mises criterionwith the
yield stress limitsy50.8 and the hardening modulusH850.1.
The elastic properties are Young’s modulusE51 and Poisson’s
ratio n50.3. The cube was discretized into 54 linear bounda

Fig. 4 Boundary elements
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.8401
Table 3 Computational results at some selected points

Node 1 23 40 69 125 178 204 225

Current 17.5631 30.0857 37.7095 28.4012 24.6407 36.5790 46.3420 41
Cell-integration 17.5631 30.0857 37.7094 28.4012 24.6407 36.5789 46.3419 41
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elements with 56 boundary nodes~Fig. 5!. No internal points are
used and all boundary nodes serve as the application points.

Table 4 shows the calculated vertical displacements at the
of the cube using the four types of the RBFs listed in Table
augmented with different orders of the polynomials. Usually
constantc in the multiquadric function is problem depende
~@29#!. Herein the element size~3! is adopted.

From Table 4, it is observed that an RBF must be combin
with polynomials to obtain a satisfactory result.

5.3 Three-Dimensional Flexible Square Footing. The
third example pertains to the behavior of a vertically load
square footing~with dimensionB51!, up to collapse, founded on
the ground surface. This example has been analyzed by Gao
Davies @16# using the conventional cell-integration techniqu
Here it is used to verify the validity and demonstrate the eff
tiveness of the current method. The Von Mises yield criterion
employed with the yield stress limitsy52Cu52 and perfect
plasticity. The elastic material parameters areE51000 andn
50.3. In the boundary element method model, the far-fi
ground surface was simply discretized using progressively la
boundary elements and part of the near-field discretization sch
is depicted in Fig. 6 where the nine shaded elements are ove
footing and subjected to a uniform vertical pressure. Due to s
metry, only a quarter of the problem is analyzed. The wh
boundary element method model consists of 57 quadratic bo
ary elements with 200 boundary nodes. In addition, 997 nodes
placed inside the domain in the expected yield zone. Figur
shows the internal nodes in elevation. It is noted that these inte

Fig. 5 Mesh of a cube under tension

Table 4 Computed displacements at top of the cube „the ana-
lytical solution is 30 …

R R3 R2 ln R AR219

RBF only 27.9724 29.7168 30.2716 29.4594
Linear 30.0019 29.9948 29.9975 30.0080

Quadratic 30.0007 30.0007 30.0035 29.9905
Cubic 30.0002 29.9908 30.0004 29.9903
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nodes are consistent with the quadratic internal cells used in
cell-integration scheme~@16#!. They may not be located at th
optimal position.

Figure 8 is load-displacement plots for the ‘‘mean’’ displac
ment that is computed using the equation~Fox, @31#!, um

5
1
3(ucorner12ucenter). This equation should yield approximatel

the same displacement as a rigid footing. For comparison,
results from the cell-integration scheme are also plotted in Fig
Although, the exact solution to this problem is not known, t
normalized collapse load for a rigid circular footing under t
same condition is approximately 6~@27#!, and it is probable that
the collapse load for a square footing will not be much grea
The computed collapse loads are: 6.19 and 6.48 for theCell-
integrationscheme andCurrentmethod, respectively. The comb
nation of the cubic polynomials with all the RBFs listed in Tab
1 gives very close results and from Fig. 8 we can see that they
in good agreement with the cell-integration results. However,
shown in Fig. 8 for the results of TPS only, none of the RBFs c
give satisfactory results without combination with polynomials

Figures 9 and 10 show the yielded nodes and deformed gro

Fig. 6 Boundary elements in plan

Fig. 7 Internal nodes in elevation
MARCH 2002, Vol. 69 Õ 159
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surface~at a load level near to collapse! in plan and transverse
sections for thecurrent results. The maximum dimensions of th
yielded range are 2.68B in vertical and 2.56B in horizontal di-
rections. The computational time spent in the computation of n
linear coefficient matrices in the current method is 46 percen
the cell-integration scheme.

6 Conclusions
In this paper, a new elastoplastic boundary element method

been described that does not require internal cells. Experie
shows that more than half of the computational time can be sa
over the conventional cell-integration scheme. It has also b
shown that the good accuracy stems more from the augment
terms than the RBF employed.
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Effective System Properties and
Special Density in Random
Vibration With Parametric
Excitation
The characteristic frequency and bandwidth of the random response to parametric
tation may be influenced by the excitation processes. It is demonstrated that the ef
stiffness and damping properties can be expressed as conditional mean values for
displacement and energy levels, respectively. These properties are used to descr
response in terms of its probability density function and its spectral density function
example demonstrates the accuracy in predicting change of frequency and dampin
parametrically excited oscillator, and another example extends the method to a
excited oscillator with domains of negative damping.@DOI: 10.1115/1.1430665#
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1 Introduction
Many dynamic systems are exposed to random excitation w

broad-band characteristics. Examples include structures exp
to turbulent flow from, e.g., wind, ships in random seas, and ea
quake excitation of structures. For linear systems simple and fa
complete procedures exist for the evaluation of the statist
properties of the response in terms of the statistical propertie
the excitation processes, when these can be represented in
of normal processes. For nonlinear systems it is usually neces
to take recourse to approximate methods. In the case of stro
nonlinear systems the most powerful method consists in repres
ing the excitation processes as ideal white noise proces
whereby the state space formulation attains the properties
Markov process, and the probability density function of the st
space vector satisfies the Fokker-Planck equation~see, e.g., Gar-
diner @1# or Lin and Cai@2#!.

Much effort has been invested in exact and approximate s
tion techniques for the Fokker-Planck equation correspondin
the stationary state. The solution for an oscillator with addit
excitation and energy-dependent damping was obtained
Caughey@3# and this solution can serve as an approximate so
tion to systems with a general but small damping term, by rep
ing the damping with an equivalent energy dependent damp
~Caughey@4#!. Alternatively, the dimension of the problem is re
duced by stochastic averaging, whereby the Fokker-Planck e
tion describes the probability density of the energy~e.g., Roberts
@5,6#!. Exact solutions for systems with parametric excitation,
which the excitation is multiplied with the response, are in gene
more difficult to obtain. A particular problem is that when th
physical broad band excitation process is replaced by an i
white noise process, the system equation must be modified
including the so-called Wong-Zakai terms, accounting for the
fect of small but finite correlation in the physical process~Wong
and Zakai@7#!. The Wong-Zakai correction terms may change t
effective system properties such as damping and stiffness as
cussed by Zhu and Lin@8#. In the present paper the effectiv

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 22, 20
final revision, Aug. 13, 2001. Associate Editor: N. C. Perkins. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication in the paper itself in the AS
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stiffness and damping properties are expressed explicitly in
form of conditional expectations for given displacement and
ergy, respectively. An early exact solution to a specific equat
was obtained by Dimentberg@9#. Exact stationary solutions for a
class of systems with both additive and multiplicative excitati
were obtained by Lin and Cai@10#. This class is termed the clas
of generalized stationary potential. It was shown by Cai and
@11# and Cai et al.@12# that approximate solutions can be obtain
by replacing a stochastic system by an equivalent system bel
ing to the class of generalized stationary potential, for which
solution exists. The method is known as dissipation energy
ancing. The class of generalized stationary potential is discus
in detail by Lin and Cai@2#. It has been shown by Cai and Li
@13# that the method of dissipation energy balancing is equiva
to the quasi-conservative averaging method~Stratonovich@14#! if
the Wong-Zakai correction is accounted for.

The joint probability density function of the state space vec
does not contain all the statistical information of the respo
process. The second-order statistics of the response for given
lag, is contained in the correlation function, often represented
the spectral density obtained by Fourier transformation of the c
relation function. The problem of obtaining the power spect
density for the stationary response has been given less atte
than that of obtaining the stationary probability density of t
response. Cai and Lin@15# have proposed a method based on
extension of the cumulant-neglect closure scheme, normally
plied to obtain approximations to the higher order moments.
considering the response at two different times an approxima
to the covariance function is obtained. Comparison with simula
data show good agreement. However, the method involves a
stantial amount of computation and relies on the convergenc
the cumulant neglect approximation. In the present paper the
proximate method proposed by Krenk and Roberts@16# for ob-
taining the spectral density is extended to nonlinear systems
parametric excitation. The autocovariance function at a given
ergy level is obtained by splitting the response following afte
chosen time into a fully correlated part corresponding to free
cay and an uncorrelated part due to the white noise excita
occurring after the selected time. The spectral density functio
then obtained by application of the Fourier transform and sum
tion of the contributions at all energy levels. This procedure, p
viously applied to systems with additive excitation~Krenk and
Roberts@16# and Krenk@17#!, is here extended to systems wit
parametric excitation. The effective damping of the system c
trols the freely decaying response used to generate the spe
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density, and the numerical example demonstrates that the dam
corresponds to that of the ideal white noise form of the equatio

2 Probability Density and Effective System Properties
A general equation of motion of a nonlinear oscillator expos

to random excitation by stationary correlated white no
W1(t),W2(t), . . . may be written in the form

Ẍ1 f ~X,Ẋ!5bj~X,Ẋ!Wj~ t ! (1)

where summation over the repeated subscriptj is implied. Any of
the functionsbj (X,Ẋ) that actually depends onX or Ẋ represent a
parametric excitation term, while constants correspond to an
ditive excitation.

2.1 Stochastic Differential Equations. White noise pro-
cesses can only be correlated at each particular instant in time
thus the correlation function is of the form

Ri j ~t!5E@Wi~ t !Wj~ t1t!#52pSi j d~t! (2)

where the constantsSi j constitute the spectral density matri
Since the processes are uncorrelated at different times, the sp
density matrixSi j is real and symmetric. The load processes c
be combined into a single normalized white noise processW(t)
with amplitudes(X,Ẋ) such that

s~X,Ẋ!W~ t !5bj~X,Ẋ!Wj~ t ! (3)

where the amplitude function is determined via the variance a

s~X,Ẋ!252pSi j bi~X,Ẋ!bj~X,Ẋ!. (4)

In the absence of parametric excitation the amplitude functions is
a constant.

In order to identify the effective potential and damping a
obtain the probability density for systems with parametric exc
tion the state variable representation (X1 ,X2)5(X,Ẋ) is intro-
duced. In terms of these state variables the equation of motion~1!
takes the form

d

dt FX1

X2
G5F X2

2 f ~X1 ,X2!G1F 0
s~X1 ,X2!GW~ t !. (5)

In this equation the excitation processW(t) is interpreted as
smooth, but rapidly fluctuating, an interpretation often associa
with Stratonovich@14#.

The joint probability density functionpx,ẋ(x,ẋ) of the stochas-
tic variables (X,Ẋ) is determined for an equivalent Markov pro
cess, obtained by replacing the smoothed white noise proces
an ideal uncorrelated white noise process. The corresponding
chastic differential equation of Itoˆ type is obtained by writing~5!
in incremental form and introducing additional drift terms to a
count for the change ofs(X,Ẋ) during the time increment~see,
e.g., Wong and Zakai@7# or Gardiner@1#!. In the present case
involving only one scalar amplitude functions, the correction
term can be written as

1

4

]s2

]x2
5

s

2

]s

]x2
5pSi j bi

]bj

]x2
. (6)

The Itô-type stochastic differential equation corresponding
~5! is

dFX1

X2
G5F X2

2 f ~X1 ,X2!1
1

4
]s~X1 ,X2!2/]X2

Gdt

1F 0
]~X1 ,X2!GdB~ t ! (7)

where dB(t) is the increment of a unit Wiener process. In t
stochastic differential equationX andẊ correspond to timet at the
beginning of the time incrementdt, and the incrementdB is inde-
162 Õ Vol. 69, MARCH 2002
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pendent ofX,Ẋ. In the ordinary differential Eq.~5! Ẋ andW are
correlated, and the productẊW represents the rate of energy inp
by the excitation process.

2.2 The Fokker-Planck Equation. The joint probability
density px,ẋ(x,ẋ) of the stochastic variables (X,Ẋ) satisfy the
Fokker-Planck equation. In the case of~7! the general formula
specializes to

]

]x1
~2x2px,ẋ!1

]

]x2
S f px,ẋ2

1

4

]s2

]x2
px,ẋ1

1

2

]

]x2
~s2px,ẋ! D50.

(8)

This equation is not easily solved for nonlinear systems of pr
tical interest~see, e.g., the discussion by Yong and Lin@18# and
Lin and Cai@10,19#!. However, a particular class of solutions—
the class of generalized stationary potential—can be obtaine
writing the joint probability density functionp(x,ẋ) in the form of
an exponential function

px,ẋ~x,ẋ!5C exp~2c~x,ẋ!! (9)

supplemented by the condition that the internal force funct
f (x,ẋ) can be written in the form

f ~x1 ,x2!5g~x1!2
1

4

]s2

]x2
1

s2

2

]c

]x2
(10)

where the functiong(x1) does not depend onx2 . Substitution of
these representations into the Fokker-Planck Eq.~8! leads to the
equation

2x2

]px,ẋ

]x1
1g~x1!

]px,ẋ

]x2
5S x2

]c

]x1
2g~x1!

]c

]x2
D px,ẋ50.

(11)

This relation is identically satisfied, ifc5c(l), where the vari-
ablel represents the effective energy of the system

l5
1
2 ẋ21G~x! (12)

andG(x) is the effective force potential function

G~x!5E
x0

x

g~x1!dx1 . (13)

In the following it is assumed that the lower integration limitx0
can be chosen such thatg(x0)50, and thatx0 is the only root of
this equation. If functionsg(x) and c~l! exist, such that~10! is
satisfied, the system belongs to the class of generalized statio
potential~Lin and Cai@10#!.

It is observed that the potentialG(x) is the integral of the
functiong(x), defined via the representation~10!. Thusg(x), and
thereby the effective potentialG(x), may contain contributions
from the excitation amplitude functions(x,ẋ).

2.3 Effective Stiffness Probability Potential. In most cases
of practical interest the internal force function cannot be rep
sented exactly in the form~10!. In these cases, an approxima
probability density can be obtained by matching the given inter
force function f (x,ẋ) to a representation of the form~10!. The
matching procedure must identify the functionc~l! as well as the
effective potential forceg(x).

The Eq.~10! is a representation of the internal force. This for
may be considered as consisting of a recoverable part, represe
by g(x), and a dissipative part representing the damping in
system. In the representation it is assumed that a functiong(x1)
can be determined as

g~x1!5 f ~x1 ,x2!1
1

4

]s2

]x2
2

s2

2

]c

]x2
(14)
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in such a way thatg(x1) is independent ofx2 . In general the
right-hand side may depend onx2 . In these cases an approxima
potential force functiong(x) is determined as the conditional ex
pectation of the representation~14! for given value ofx1 ,

g~x1!5EF f ~x1 ,X2!1
1

4

]s2

]X2
2

s2

2

]c

]X2
Ux1G . (15)

The conditional expectation in~15! corresponds to integration
with respect tox2 for constantx1 as illustrated in Fig. 1~a!,

E@* ux1#5E
2`

`

* pẋux~x2ux1!dx2 . (16)

The last term in~15! can therefore be integrated by parts to gi
the following conditional expectation formula for the potent
force function,

g~x1!5EF f ~x1 ,X2!2
1

4

]s2

]X2
Ux1G . (17)

Thus, the effective potential force functiong(x) is determined as
the conditional expectation of the internal force, including t
Wong-Zakai correction, as it appears in the stochastic differen
Eq. ~7!. This approximation may be considered as an unbia
mean value.

When the argument of~17! does not depend onX2 , the effec-
tive force function g(x1) can be identified directly, withou
knowledge of the probability densitypx,ẋ(x,ẋ). However, in the
general case it may be necessary to let~17! determineg(x1) in a
form including parameters to be determined by an iterative pro
dure involving the probability densitypx,ẋ(x,ẋ).

The functionc~l! is determined from the requirement of equ
energy dissipation of the given functionf (x,ẋ) and its represen-
tation via ~10!. The rate of energy dissipation is obtained fro
~10! via multiplication by the velocityẋ, whereby

f ~x1 ,x2!x25g~x1!x22
1

4

]s2

]x2
x21

s2

2

dc

dl
x2

2. (18)

While this relation cannot be satisfied identically in general
can be satisfied in mean for any given energy level. This co
sponds to taking the conditional mean of~18! for given energy
level l. This is illustrated in Fig. 1~b!, showing a closed curve
corresponding tol5const. This curve represents an equivale
undamped oscillation, with the effective potential force functi
g(x).

The first term on the right side in~18! is g(x) ẋ5dG/dt and
will therefore not contribute in a stationary ergodic problem. T
conditional mean of the energy dissipation representation~18! at
given energy level therefore leads to the general approximati

dc

dl
5

EF S f 1
1

4

]s2

]X2
DX2ulG

E@
1
2 s2X2

2ul#
. (19)

Fig. 1 Conditional expectations: „a… potential force via E†* zx ‡,
„b… exponent c„l… and damping via E†* zl‡
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In the absence of the correction term the numerator beco
the conditional expectation off (X,Ẋ)Ẋ, traditionally used to de-
termine the equivalent damping. In the more general case, inc
ing parametric excitation, the result~19! is equivalent to that ob-
tained by Cai and Lin@11# in a somewhat different form, by the
method of dissipation energy balancing.

2.4 A Simple Class of Exact Solutions. A particular class
of simple solutions is obtained for systems where both damp
and the excitation amplitude functions only depend on the vari-
ablesx,ẋ through the energyl, defined in~12! and~13!. Assume
that damping is defined from a potential functionH(l) as
]H/] ẋ5H8(l) ẋ, and the stiffness isg(x). The equation of mo-
tion then is

Ẍ1H8~L!Ẋ1g~X!5s~L!W~ t ! (20)

where s(L)W(t) is the conglomerated effect of additive an
parametric excitation. It is seen, that whens only depends onx,ẋ
throughl, the conditional average~17! will identify g(x) also as
the effective stiffness, and thus the potential in the energy is ba
on G(x)5*g(x)dx.

The force term in the equation of motion~20! is of the form
~10! permitting a simple closed form solution. Identification of th
damping terms gives

H8~l!5
1
2 s~l!2c8~l!2

1
2 s~l!s8~l!. (21)

This identifies the functionc8(l) as

c8~l!5
2H8~l!

s~l!2 1
s8~l!

s~l!
. (22)

Substitution of this expression into the potential format~9! of the
probability density function gives

px,ẋ~x,ẋ!5
C

s~l!
expS 2E

0

l 2H8~j!

s~j!2 dj D (23)

This class contains several of the exact solutions, extracted in
and Cai@2# as special cases of the approximate solutions obtain
e.g., by weighted averaging. The well-known case of additive
citation alone corresponds tos5const.~Caughey@3#!.

An intuitive explanation of the simplicity of this class of prob
lems is, that for systems in which dissipation from damping
small, or the dissipation is nearly balanced by the energy inpu
the excitation process, the system energy changes slowly, and
the modulation of the excitation process vias~l! is also slow. The
solution~23! is therefore of the same form as for constants. Note,
however, the factors(l)21 outside the exponential, which is no
identified explicitly fors5const.

An obvious restriction of this class of solutions is the requi
ment that the amplitude function of all excitation processes,
termined from the instantaneous variance by~4!, should be a func-
tion of x,ẋ only through the variablel, defined by the system
This restriction prevents representation of some coupling effe
that can be captured, if stiffness and damping are determine
the conditional expectations~17! and ~19!.

3 Modified State Space Representation
Let the effective stiffnessg(x) be determined from the condi

tional expectation~17!, thereby defining the system energyl. For
lightly damped systems, or systems in which energy dissipa
and input nearly balance, the change of the system energy is
compared with a typical period of oscillation. For such syste
fairly detailed information about the behavior within time inte
vals of the order of a few typical oscillation periods can be o
tained by appealing to local similarity between the mean beha
under stochastic load and a similar free undamped oscillatio
the same energy level. This idea goes back to Stratonovich@14#
MARCH 2002, Vol. 69 Õ 163
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and lies behind the so-called quasi-conservative avera
method, using local time averages corresponding to constan
ergy ~Roberts@5,6#!.

3.1 Instantaneous Angular Frequency. It is convenient to
develop the idea of local similarity in connection with a modifi
phase plane in which free undamped oscillations are represe
by circles~Krenk and Roberts@16#!. Thus the Cartesian state var
ablesz1 ,z2 must satisfy the relation

2l52G~x!1 ẋ25z1
21z2

2 (24)

corresponding to the polar representation

z15A2l cosw, z252A2l sinw (25)

in terms of radiusA2l and phase anglew. There is a certain
freedom in choosing the modified state variablesz1 ,z2 , but it
appears to be most convenient to use

z15sgn~g~x!!A2G~x!, z25 ẋ. (26)

As already mentioned, the integration limitx0 in the definition
~13! of the potentialG(x) is assumed to be the only root of th
equationg(x0)50. This choice implies thatG(x0)50 and conti-
nuity of the mapping ofx on z1 .

The instantaneous angular frequency is defined as the deriv
of the phase velocity, and use of~25! and ~26! leads to

v5
dw

dt
5

dz1

dx
5

ug~x!u

A2G~x!
. (27)

The instantaneous angular frequency can be considered
function of the displacementx or the modified phase plane var
ablez1 . It is seen that the modification of the phase plane impl
by the transformation~26! amounts to a local rescaling of th
x-axis with the instantaneous angular frequency,dz15v(x)dx.

The instantaneous angular frequencyv(x) plays an important
role in the relation between the probability density functi
px,ẋ(x,ẋ) of the original variablesX,Ẋ and the probability density
pl,w(l,w) of the polar state variablesL, F. As demonstrated by
Krenk and Roberts@16#

pl,w~l,w!5
1

v~x!
px,ẋ~x,ẋ!. (28)

For the class of solutions considered herepx,ẋ5px,ẋ(l), and
thereby independent of the phase anglew. The marginal probabil-
ity density pl(l) of L is obtained from~28! by integration over
the phase anglew,

pl~l!5T~l!px,ẋ~l! (29)

where the factor

T~l!5E
0

2p dw

v~l,w!
(30)

is the period of a free undamped oscillation at energy levell.

3.2 Effective Damping Properties. The state variables
z1 ,z2 in the modified phase plane clearly bring out the structure
the nonlinear system, and its relation to a linear system. In
case of parametric excitation it is important to distinguish betw
the wide-band~Stratonovich! formulation~5!, and the formulation
~7! as a stochastic~Itô! differential equation. It is seen that th
effect of removing the excitation term is different in the two fo
mulations. In the following the effective damping properties of t
system under random parametric excitation will be identified
assuming that the response after a selected timet can be consid-
ered as the sum of two independent contributions: one co
sponding to the response in the absence of further excitation,
the other as the response generated by the excitation after the
t. This argument assumes independence of the two parts,
164 Õ Vol. 69, MARCH 2002
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therefore suggests the use of the stochastic differential form~7! in
which the excitation has strictly independent increments.

The modified phase plane representation of the stochastic
ferential Eq.~7! is

dFZ1

Z2
G5F 0 v

2v 0 G FZ1

Z2
Gdt2F0hGdt1F 0

s GdB~ t ! (31)

where the forceh associated with damping follows from~7! and
the potential representation~10! as

h5
1
2 s2c8~L!Ẋ2

1
2 ]s2/]Ẋ. (32)

The first term describes the circular motion in the modifi
phase plane with nonuniform angular velocityv5v(X) corre-
sponding to a free undamped oscillation, the second term re
sents damping viah5h(X,Ẋ), and the last term is the excitatio
with amplitude functions5s(X,Ẋ). Linear stiffness simply cor-
responds tov5const.

The change of the system energyL51/2(Z1
21Z2

2) follows from
~31! by scalar multiplication with the vector (Z1 ,Z2). If consid-
ering the response locally as consisting of the sum of a part du
excitation prior to some timet and another part with homogeneou
initial conditions att generated by the excitation aftert, the energy
of the part without excitation after timet would be governed by
the differential equation

dL

dt
52Ẋh~X,Ẋ!52ẊS 1

2
s2c8~L!Ẋ2

1

2
]s2/]ẊD . (33)

For linear systems and constants the split into independen
additive parts is exact, while for nonlinear systems it represe
only a local approximation. The rate of energy change in~33!
changes over a typical period and vanishes forẊ50. For lightly
damped systems the change in energy over one period is s
and it is expedient to work with an effective rate of ener
change, approximated by the expectation conditional on the
ergyl at the initial timet. Thus the average energy change in t
part of the response without current excitation is governed by
equation

K dL

dt L
t

52EF1

2
s2c8~l!Ẋ22

1

2
Ẋ]s2/]ẊulG (34)

where ^& t denotes time average. Substitution ofc~l! from ~18!
then gives the averaged rate of energy change in terms of
original system properties as

K dL

dt L
t

52EF f ~X,Ẋ!Ẋ2
1

4
Ẋ]s2/]ẊulG . (35)

The damping coefficient of a freely decaying system is defin
by the relation

dl

dt
52hll. (36)

Thus, the effective damping coefficient of the decaying part
the response at energy levell follows from ~35! as

hl5
1

l
EF S f 2

1

4

]s2

]X2
DX2ulG5

1

l K S f 2
1

4

]s2

]X2
DX2ulL

t

.

(37)

It is noted that in this formula the recoverable part off (X,Ẋ)
represented byg(X)Ẋ does not contribute.

The effective damping of the system treated in Section 2.4 w
damping forceH8(L)Ẋ and parametric excitations(L)W(t)
takes a particularly simple form. Direct substitution into~37!
gives
Transactions of the ASME
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hl5
1

l S H82
1

4

ds2

dl DE@X2
2ul#5

1

l S H82
1

4

ds2

dl D ^X2
2ul& t .

(38)

This formula clearly displays the effective damping as consist
of the coefficientH8 from the governing differential equation, an
a correction term21/4ds2/dl arising from parametric excitation
It is seen that the effective damping is reduced by parame
excitation increasing with the energy. In the case of nonparam
excitation the latter term is absent, and the effective dampin
independent of the excitation.

4 Response Covariance and Spectral Density
The spectral density of the response is estimated by an app

mate procedure proposed by Krenk and Roberts@16# and Krenk
@17#. The idea is to estimate the covariance function of the vel
ity processẊ(t) from the local behavior of the response in
limited time interval aroundt in the spirit of linear regression. I
the response is assumed known at timet, the response at a late
time t1t can be considered as consisting of two parts: a fu
correlated part corresponding to freely decaying response, a
part generated by the stochastic excitation process within the
terval t1t. For linear systems under additive white noise exci
tion, the two contributions are strictly uncorrelated, and thus
covariance betweenẊt andẊt1t is determined entirely by the firs
part. In the present case of a nonlinear system with parametr
well as additive excitation it is assumed that the local respon
and thereby the covariance function, can similarly be estima
from the part of the response corresponding to freely decay
oscillations alone. A key point in this argument is that, the cor
lated part of the response is locally similar to a free undam
oscillation.

Following Roberts@6# the free undamped oscillation is repr
sented by introducing a harmonic representation of the free o
lation velocity, i.e., a representation of the form

sinw t5(
j 51

`

sj sin~ j vlt! (39)

where the mean angular frequencyvl52p/T(l) at energy level
l has been introduced for convenience. This leads to the follow
approximation for the response covariance function,

Cx~tul!5l expS 2
1

2
hlt D(

j 51

` S sj

j vl
D 2

3Fcos~V jt!1
z j

A12z j
2

sin~V jt!G , (40)

where the damping ratioz j and the damped angular frequencyV j
of harmonic No.j are defined as

z j5
hl

2 j vl
, V j5 jA12z j

2vl . (41)

The damping ratioz j , representing therelative bandwidth of
the harmonic component No.j with angular frequencyj vl , is
inversely proportional toj, and thus theabsolutebandwidth of all
harmonics are equal at any particular energy levell.

The conditional covariance functionCx(tul) in ~40! is in the
form of a weighted sum of covariance functions corresponding
a linear system. The one-sided spectral density is here introd
via the definition

Sx~v!5
1

p E
2`

`

Cx~t!cos~vt!dt. (42)

The conditional spectral density then follows from~40! as
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Sx~vul!5
hll

p (
j 51

`
2sj

2

~ j 2vl
22v2!21hl

2v2 . (43)

Finally, the unconditional spectral density is found by integ
tion over the energy levels, using the energy probability den
pl(l) from ~29!.

Sx~v!5E
0

`

Sx~vul!pl~l!dl (44)

Fogli et al. @20# have proposed a method whereSx(vul) is
given by a single term of the form~43!. This approach does no
seem to capture the presence of higher harmonics for systems
nonlinear stiffness.

It is seen that nonlinear effects can enter the spectrum via n
linear dampinghl and nonlinear stiffnessvl , and both effects
are then averaged via the energy probability densitypl(l). The
higher harmonics in the spectral density~43! vanish for linear
stiffness, which impliesvl5const, ands151, s35s55 . . . 50.

5 Examples
The following examples illustrate determination of respon

properties of systems with parametric excitation, and compare
theoretical results with simulations carried out by use of a four
order Runge-Kutta integration scheme.

Example 1. It follows from the definition~17! of the stiffness
function g(x) that the stiffness and thereby the characteristic f
quency of the system may be changed by the parametric ex
tion. This effect is illustrated by the following system, also inve
tigated by Zhu and Lin @8# combining parametric and
nonparametric excitation,

Ẍ1v0~2z1W2~ t !!Ẋ1v0
2~11W1~ t !!X5W0~ t !. (45)

Here W0(t), W1(t), and W2(t) are white noise processes wit
spectral density matrixSi j . It is assumed thatS015S0250,
whereby the nonparametric excitation term is uncorrelated w
the two parametric excitation terms. The amplitude follows fro
~4!,

s~X,Ẋ!252p~S001v0
4X2S1112v0

3XẊS121v0
2Ẋ2S22! (46)

The effective stiffness is evaluated from~17! as

g~x!5EF f ~x,Ẋ!2
1

4

]s~x,Ẋ!2

]Ẋ
uxG5~jv0!2x (47)

wherej2 is the ratio between the effective stiffness and the
parent stiffness of the system

j2512pv0S12. (48)

It is seen that correlation between the two parametric excita
processesW1(t) and W2(t) leads to a change of effective stiff
ness. The elastic potential is obtained by integration of the s
ness and the energy follows as

l5
1
2 ẋ21

1
2~jv0!2x2. (49)

The phase plane representation~25! reduces to

~jv0!x5A2l cosw, ẋ52A2l sinw (50)

by which the state vector (x,ẋ) is represented by the energy an
phase~l, w!. The undamped free response is harmonic, and
expectation for given energy level therefore reduces to an ave
over the phase anglew. The Eq.~19! for the gradient of the po-
tential c~l! then takes the form
MARCH 2002, Vol. 69 Õ 165
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dc

dl
5

1

2p E
0

2pS f ~x,ẋ!ẋ1
1

4

]s~x,ẋ!2

] ẋ
ẋDdw

1

2p E
0

2p 1

2
s~x,ẋ!2ẋ2dw

(51)

with x and ẋ given by ~50!. Evaluation of the integrals gives

dc

dl
5

4zv012pv0
2S22

2pS001~pv0
2j22S1113pv0

2S22!l
. (52)

This expression is rewritten by introducing a reference ene
level l0 and a nondimensional parametern,

l05
2S00

v0
2j22S1113v0

2S22
, n5

4z2pv0j22S112pv0S22

pv0j22S1113pv0S22

(53)

whereby it takes the simple form

dc

dl
5

n11

l01l
. (54)

After introducing the nondimensional energyl̃5l/l0 integra-
tion of ~54! leads to the probability density function

pl̃~ l̃ !5
n

~11l̃ !n11
, n.0. (55)

The distribution ofl̃ is seen to depend on only one variablen.
The probability density is defined forn.0. However, the mean
value is given by

E@ l̃#5ml̃5
1

n21
, n.1 (56)

so for 0,n<1 the distribution does not have a mean value, wh
implies that the variance of the displacement is infinite and
idea of a stationary process meaningless. The following invest
tion therefore concentrates on systems fulfilling the requirem
n.1.

The correlation between the two parametric excitation p
cesses is quantified via the correlation coefficient

r5
S12

AS11S22

, 21<r<1. (57)

The effective damping is evaluated by~37! as

hl5
1

l
EF f Ẋ2

1

4

]s2

]Ẋ
ẊulG52zev0 , ze5z2

1

2
pv0S22.

(58)
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ze is the effective damping ratio, which reduces to the parametz
for W2(t)[0. ForW2(t)Þ0 the energy input of the excitation i
biased, which leads to a reduction in the effective damping.

The energy conditional spectral density reduces to

SX~vul!5
hll

p

2

~~jv0!22v2!21hl
2v2 (59)

where the effective eigenfrequencyjv0 enters. The integration
~44! for the unconditional spectral density can be carried out
plicitly, whereby

SX~r !v0

sx
2 5

2ze /j

p

1

~12r 2!21~2ze /j!2r 2 , r 5
v

jv0
. (60)

The right-hand side in this representation integrates to one.
variance of the position is given by

sx
25

E@l#

~jv0!2 5
l0

~jv0!2~n21!
. (61)

Table 1 gives the parameters of two different systems under
different loading situations. The systems have damping ratiz
50.05 and 0.1, respectively, and the excitation processesW1(t)
andW2(t) have identical intensity, but are either uncorrelated
fully correlated.

In each case the effective damping ratioze given by ~58b! is
reduced by about 20 percent, independent of the correlation.
relative natural frequencyj from ~48!, on the other hand, is equa
to unity for uncorrelated excitation, but reduced for the correla
excitation. The shape parametern from ~53b! is also reduced by
correlation of the excitation processes. The probability densi
corresponding to the parameter combinations given in Table 1
shown in Fig. 2. The solid curves represent the theoretical de
ties given by~55!. Since the nondimensional form of the probab
ity density only depends on the shape parametern, andn.2 for
all four cases, the four probability density functions are ve
similar.

The theoretical results are compared to results obtained by
merical simulation of 20,000 periods using a fourth-order Run
Kutta integration scheme. The white noise excitation is rep

Table 1 System parameters with S11ÄS22

z 0.0500 0.1000
v0Sj j 0.0064 0.0120

r 0 1 0 1

ze 0.040 0.040 0.081 0.081
j 1.000 0.990 1.000 0.981
n 2.000 1.985 2.153 2.122
Fig. 2 Probability density p l̃„l̃…; „a… zÄ0.05, v0S11Äv0S22Ä0.0064, „b… zÄ0.1,
v0S11Äv0S22Ä0.012
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Fig. 3 Auto-spectral density Sx„v…v0 Õsx
2; „a… zÄ0.05, v0S11Äv0S22Ä0.0064, „b…

zÄ0.1, v0S11Äv0S22Ä0.012
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of
a

nd
neu-
sented by linear interpolation of independent Gaussian stoch
variables. At a sampling rate of 2pDt/v050.02 such a process i
very broad-banded with respect to the system. The probab
density of the simulated records are shown by crosses and do
Fig. 2. The theoretical results are seen to agree very well with
results obtained by stochastic simulation.

The spectral densities for the parameter combinations give
Table 1 are shown in Fig. 3. The solid curves correspond to
theoretical expression~60!. The reduction of the natural frequenc
for positively correlated excitation processes~j50.990 andj
50.981! is clearly illustrated in the figure. The spectra are co
pared to results obtained by numerical simulation of 400,000
riods. The simulated spectra are given by the crosses and do
Fig. 3. The theoretical results agree very well with the resu
obtained from stochastic simulation, thus confirming the theo
ical prediction of the reduction of natural frequency.

Figure 4 shows the same simulated spectra as in Fig. 3, but
compared to the theoretical predictions that would result fr
neglecting the parametric correction term in the definition~37! of
the effective damping coefficient, leading toze5z, irrespective of
the parametric excitation. Comparison of Figs. 3 and 4 clea
illustrates the effect of the parametric correction term on the sh
of the spectral density, and the accuracy of the definition of
effective damping coefficienthl by ~37!.

Finally, a few words concerning the stability of the syste
should be added. The additive excitation term will not influen
the stability of the system. In the case whereW1(t)[0 an exact
stability limit can be obtained following a procedure described
e.g., Lin and Cai@2# Section 6.3. An equation governing the log
rithm of the Euclidean norm of the state-space vector can be
tablished. This equation is integrated from 0 tot. Letting t tend to
infinity, the following stability criterion is obtained:
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pv0S22

z
,2 for S1150. (62)

From (58b) it is seen that this corresponds to requiring positi
effective damping. The stability of this system has been discus
by Dimentberg@9# for the special caseS115S22.

Example 2. This example explores the response properties
a parametrically excited oscillator with nonlinear damping with
stable limit cycle~Lin and Cai@2#!. The oscillator is described by
the equation

Ẍ2v0Fb2
2av0

2

Ẋ21v0
2X2GX2Ẋ1v0

2@11W~ t !#X50. (63)

The amplitude functions(x,ẋ) for the excitation follows from
~4! as

s252pSwv0
4x2 (64)

whereSw is the spectral density of the white noise processW(t).
The system has linear stiffness and energy functionl given by

g~x!5v0
2x, l5

1
2~ ẋ21v0

2x2!. (65)

For a.0 the damping is negative at small energy levels, a
changes to positive damping, when the energy exceeds the
trally damped energy level

l05
av0

2

b
. (66)
Fig. 4 Auto-spectral density Sx„v…v0 Õsx
2; „a… zÄ0.05, v0S11Äv0S22Ä0.0064, „b…

zÄ0.1, v0S11Äv0S22Ä0.012
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Fig. 5 Probability density p x ,ẋ„x ,ẋ … for „a… ãÄ0, „b… ãÄ0.5, „c… ãÄ5
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Systems with this particular limit circle-type behavior have be
used to represent vortex-induced structural vibrations~Rüdinger
and Krenk@21#!.

In the present example the excitation amplitudes is indepen-
dent of ẋ, and thus it follows from~10! and ~64! that

dc

dl
5

1

pSwv0
3 Fb2

av0
2

l G . (67)

By introduction of the nondimensional variables

ã5
a

pSwv0
, l̃5

l

l0
5

lb

av0
2 (68)

Eq. ~67! takes the simple form

dc

dl̃
5ãF12

1

l̃
G . (69)

After integration the joint probability density of (X,Ẋ) follows
from ~9! as

px,ẋ~x,ẋ!5Cl̃ ã exp~2ãl̃ !. (70)

Finally, the probability density function of the nondimension
energyl̃ is determined from~29! with T52p/v0 as

pl̃~ l̃ !5l0pl~l!5l0Tpx,ẋ~x,ẋ!5
~ ãl̃ !ã

G~ã !
exp~2ãl̃ !. (71)

The factorG(ã) follows from normalization of the probability
density integral and implies that the parameterC in the previous
formula is given byC5(v0/2pl0)ã ā/G(ã).

It is seen that the nondimensional energyl̃ is gamma distrib-
uted with parameterã. Integrability of the probability density
pl̃(l̃) requires thatã.21, and for21,ã,0 the probability
density has a singularity atl̃50. For ã50 the stochastic vari-
ables (X,Ẋ) are joint normal, and forã.0 the probability density
function px,ẋ(x,ẋ) develops an increasingly sharper maximu
around the circleẋ21(v0x)252l0 as illustrated in Fig. 5. Figure
6 shows the probability densitypl̃(l̃) of the nondimensional en
ergy for ã50, ã50.5, andã55.0, respectively. The solid curv
RCH 2002
en

al

m

corresponds to the expression~71! and the points are obtained b
simulation of response records by fourth-order Runge-Kutta in
gration. The agreement is seen to be excellent.

In the present case of linear stiffness the undamped free
sponse at energy levell is harmonic,

xt5
A2l

v0
cos~v0t !, ẋt52A2l sin~v0t !, (72)

corresponding tosj51,0, . . . in ~39!. The effective damping at
energy levell is determined from~37! by averaging over the
undamped period,

hl5
v0

l Fb2
av0

2

l G^X2Ẋ2ul& t5
1

2
av0~ l̃21!, (73)

wherel̃ is the nondimensional energy introduced in~68b!.
The effective damping can be either positive or negative, bu

either case its absolute value determines the rate of any trans
and thus the spectral density~43! in this case takes the form

Sx~vul!5
uhlul

p

2

~v0
22v2!21hl

2v2 . (74)

The unconditional auto spectral density is found by weigh
integration according to~44!. When the frequency ratior
5v/v0 is introduced, the resulting integral is

Sx~r !5
4l0a

v0
3pG~ã!

E
0

`

~ãl̃ !ã exp~2ãl̃ !

3
l̃ul̃21u

4~12r 2!21a2r 2~ l̃21!2
dl̃. (75)

The integration is carried out numerically and Fig. 7 shows
theoretical results as solid curves for four parameter comb
tions. Results obtained by application of the fast Fourier transfo
to the simulated records are indicated by dots. The agreem
between the theory and the simulated results is very good,
though a small but systematic deviation appears in the two lo
figures withã55. As seen from~68a! a ‘‘large’’ value of ã cor-
Fig. 6 Probability density of nondimensional energy; „a… ãÄ0.5, „b… ãÄ5
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Fig. 7 Auto-spectral density of position; „a… ãÄ0.5, aÄ0.01, „b… ãÄ0.5, aÄ0.1, „c…
ãÄ5, aÄ0.01, „d… ãÄ5, aÄ0.1
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responds to a ‘‘small’’ excitation intensitySw , and thus these
figures corresponds to a smaller stochastic contribution to mo
in the stable limit cycle.

It follows from ~75! that like the probability density function
pl̃(l̃) the asymptotic behavior of the normalized spectral den
Sx(r )v0

3/l0a depends only on the parameterã. On the other
hand, it is seen from Fig. 7 that for identical value ofã the peak
value of the normalized spectral densitySx(r )v0

3/l0a decreases
with increasinga. In fact it follows from ~75! with r 51 that the
peak value is proportional toa22. The decrease of the peak valu
and the corresponding spreading of the spectral density is a
sequence of the increased intensity of the parametric excita
process. Thus, increase of the intensity of the parametric ex
tion leads to decreasing narrow-band characteristics of
response.

6 Conclusions
A random excitation of parametric type may fundamenta

change the random response properties. The transformation o
original differential equations for rapidly fluctuating excitatio
with very small correlation length to a stochastic differential eq
tion for ideal white noise excitation introduces a correcti
term—the so-called Wong-Zakai term—in the formulation. Th
term appears in three different contexts: in the definition of
probability density potentialc(x,ẋ), in the effective stiffness
functiong(x), and in the effective damping coefficienthl(l). In
the present paper each of these functions have been express
the form of a conditional expectation including an appropri
correction of Wong-Zakai type. The definition of probability de
sity potential and the effective stiffness relies on the decomp
tion ~10!, which has been obtained previously~see, e.g., Lin and
Cai @2#!. The definition of the damping coefficient is based on
new argument involving a local split of the response into a fu
correlated and a completely uncorrelated part. This generaliz
previous argument by Krenk and Roberts@16# for additive excita-
tion by observing that for parametric excitation the system pr
echanics
tion

ity

e
on-

tion
ita-
the

lly
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n
a-
n
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-
si-
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lly
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p-

erties should be taken from the corresponding stochastic diffe
tial equation in order to obtain the appropriate split into correla
and uncorrelated parts.

The influence of the parametric excitation on the stiffness a
damping properties has been illustrated via the spectral densi
a linear system. The theory and numerically simulated reco
clearly identify a change in natural frequency and a change in
response bandwidth, indicating a change in effective damp
The theory has also been used to obtain the probability den
and spectral density of a self-excited oscillator, which has b
used to represent vortex-induced vibrations. In this case the a
lute value of the damping coefficient is used to represent the t
scale of energy changes. In both examples the numerical sim
tions show excellent agreement with the theoretical results.
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Random Response Analysis of
Preisach Hysteretic Systems With
Symmetric Weight Distribution
The present study is intended to develop a new method for analyzing nonlinear stoc
dynamic response of the Preisach hysteretic systems based on covariance and sw
probability analysis of a nonlocal memory hysteretic constitutive model. A nonlin
algebraic covariance equation is formulated for the single-degree-of-freedom Prei
hysteretic system subjected to stationary Gaussian white noise excitation, from whi
stationary mean square response of the system is obtained. The correlation coefficie
hysteretic restoring force with response in the covariance equation are evaluated by
the second moments and switching probabilities that are derived from the disjoint
probability and the mathematical machinery of an exit problem. In recognizing the s
metry of the classical Preisach weighting function, an approximation of equal ‘‘up’’ a
‘‘down’’ switching probabilities is introduced, which greatly simplifies the evaluation
the correlation coefficients. An example of the Preisach hysteretic system with Gau
distribution weighting function is presented and the analytical results are compared
the digital simulation findings to verify the accuracy of the derived formulas. Computa
results show that there exists a sharp drop in the mean square responses with the in
of a hysteresis parameter, and the mean square responses are affected only in a c
range of the Preisach weighting function.@DOI: 10.1115/1.1428333#
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1 Introduction
Nonlinear hysteretic dampers and isolators have been wi

used in the past decade. In addition, there has been an incre
interest recently in using smart materials such as piezoceram
shape memory alloys, and electro or magneto-rheological flu
for vibration control. Actuators, sensors, and dampers based
these materials also exhibit significant hysteresis. Nonlinear h
teresis effects allow multiple output states for a given input st
and may cause inaccuracy in open-loop control and instabilit
closed-loop control. From the control perspective, it is desirabl
develop hysteresis models that not only accurately capture
constitutive response but also suit themselves to control de
and stability analysis. The recently popularized Preisach mo
~@1–4#!, which is really capable of describing hysteresis nonl
earity with nonlocal memory, has many well-defined propert
that make it suitable for control applications~@5#!. For instance,
the widely used differential-type models in mechanical and str
tural disciplines, can only represent hysteresis with local mem
~@6#!, and therefore do not allow the crossing of minor loo
which can arise in real materials. As a result, models of this k
may cause inaccuracy in transient dynamic response predic
and in closed-loop control; whereas the Preisach model, due t
nonlocal memory heredity, can accurately represent crossing
nor loops. The Preisach model can also be extended to des
rate-dependent hysteresis~@3#! and degrading hysteresis~@7#!.

The Preisach model has enjoyed extensive applications in
scribing various hysteresis phenomena, such as ferromagnetic
terials ~@3,8#!, piezoceramic actuators~@9,10#!, shape memory al-
loy materials ~@11,12#!, magnetostrictive actuators~@13,14#!,
plasticity~@15,16#!, vibration dampers~@17#!, and semi-rigid struc-
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CHANICS. Manuscript received and accepted by the ASME Applied Mechanics
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chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
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tural joints~@18#!. Introduction of the Preisach model supplies t
lack of a suitable hysteresis model in mechanical and struct
areas, which is both capable of capturing nonlocal hysteresis
mathematically tractable. Experiments revealed that the resto
force of hysteretic devices related mainly to the peak displa
ments incurred by them in the past deformation~@19#!. The Prei-
sach model is especially effective in representing such nonlo
but selective-memory hysteresis, in which only past input extre
rather than entire input variations leave their marks upon fut
states of hysteresis nonlinearities. In mechanical and struct
engineering fields, the dynamic loading to which hysteretic s
tems are subjected is usually random in nature. To date only
mean output of the Preisach model under stochastic input for
cosity or after-effect has been studied by Mayergoyz and Korm
~@20–22#!. They addressed this issue by means of stochastic
turbation as a discrete-time random process and a continue-
diffusion process, respectively.

In this paper, we study the stochastic dynamics of a nonlin
hysteretic system in terms of the Preisach model. A new met
for predicting the stationary mean square response and correl
coefficients of the Preisach hysteretic system~not merely Preisach
model! under stationary Gaussian white noise excitation is dev
oped. The proposed method is based on covariance and switc
probability analysis through the use of integral expression of
Preisach restoring force. In particular, approximate expression
the correlation coefficients are formulated for the case of symm
ric Preisach weighting function, which greatly facilitate the r
sponse analysis. An example of the Preisach hysteretic sys
with weighting function in the Gaussian distribution form is pr
sented and the analytical results are compared with the dig
simulation to verify the accuracy of the derived formulas. T
mean square responses against the hysteresis parameters, s
parameters and excitation intensity are also studied which are
nificant for control application.

2 Preisach Model
The Preisach model was first presented by physicist F. Preis

in 1935 as a physical model of ferromagnetic hysteresis~@1#!. In
the 1970s and 1980s, the mathematical properties of the Prei
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model were examined and explored by Russian mathematic
~@2#!, who separated this model from its physical meaning a
formulated it in a purely mathematical form. In this way, the ba
Preisach model can be represented as a superposition of a co
ous family of elementary rectangular loops, calledrelay hysteresis
operatorsas shown in Fig. 1, in the following mathematical for
~@3,4#!

z5E E
a<b

m~a,b!ĝab~x!dadb, (1)

wherex(t) andz(t) denote the displacement and hysteretic res
ing force variables, respectively, in the present study.m~a, b! is a
weighting function, called Preisach function, with support on
limiting triangle S of the ~a, b!-plane with linea5b being the
hypotenuse and point (ao ,bo52ao) being the vertex. The tri-
angleS in the half-planea<b is named Preisach plane.m~a, b! is
equal to zero outsideS. ĝab(x) is the relay hysteresis operato
~Fig. 1! with thresholdsa,b. It is a two-position relay with only
two values11 and21 corresponding to ‘‘up’’ and ‘‘down’’ posi-
tions, respectively, i.e.,

ĝab~x!5H 11 ascendingx.a or descendingx.b

21 ascendingx,a or descendingx,b
. (2)

The Preisach model can be interpreted as a spectral deco
sition of a complicated hysteretic constitutive law that has non
cal memory, into the simplest relay hysteresis operatorsĝab(x)
with local memory. Given an arbitrary input sequencex(t) as
shown in Fig. 2, the Preisach planeScan be divided into two sets
at any time instantt: S1(t) consisting of points~a, b! for which
the correspondingĝab(x)-operators are in the ‘‘up’’ position; and
S2(t) consisting of points~a, b! for which the corresponding

Fig. 1 Relay hysteresis operator

Fig. 2 Time sequence of input x „t …
172 Õ Vol. 69, MARCH 2002
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ĝab(x)-operators are in the ‘‘down’’ position. The interfaceL(t)
betweenS1(t) andS2(t), as shown in Fig. 3, is a staircase lin
whose vertices havea andb coordinates coinciding, respectively
with local minima mk (k51,2, . . . ) and maxima Mk (k
51,2, . . . ) of theinput sequence at previous instants of time. T
nonlocal selective-memory is stored in this way. Thus, the out
z(t) at any instantt can be equivalently expressed as

z~ t !5E E
S1~ t !

m~a,b!dadb2E E
S2~ t !

m~a,b!dadb. (3)

It should be noted that the interfaceL(t) is varying with the
time evolution. Therefore, the integration domainsS1(t) and
S2(t) in Eq. ~3! are the instantaneous functions of time. The ba
Preisach model is characterized by two properties: the wiping
property and the minor-loop congruence property~@3,4#!. The
wiping-out property refers to the constraint that the output
affected only by the current input and the alternating series
previous dominant input extrema, the effect of all other previo
input values being wiped out. Following the wiping-out proper
each local input minimum wipes out the vertices who
a-coordinates are above this minimum, while each local ma
mum wipes out the vertices ofL(t) whoseb-coordinates are be
low this maximum. In Fig. 2,M5$Mi% and m5$mi% represent
the set of dominant maxima and the set of dominant minim
respectively. It follows thatMi.M j for j . i and mk,mp for p
.k. The contents ofM and m vary over time. The Preisach
model outputz(t) is uniquely determined by the set$M ,m,x(t)%
for t>0. The minor-loop congruence property requires that
equivalent minor hysteresis loops be congruent. Two minor lo
are said to be equivalent if they are generated by an input var
monotonically between the same two extrema. Congruency
tween two minor loops means that one will exactly overlap
other if shifted by an appropriate vertical translation.

It is evident from Eq.~3! that the hysteresis behavior repr
sented by the Preisach model is completely characterized by
weighting functionm~a, b!. The Preisach function of a specifi
hysteretic system is usually determined by identification from
perimental data. Both the parametric and nonparametric meth
have been developed for the identification of the functionm~a, b!
~@23,24#!. The weighting functionm~a, b! also can be determined
after experimentally obtaining the set of first-order reversal~tran-
sition! curves~@3#!. In the experiment, the inputx(t) is first de-
creased to a value which is less thana0 . Then the input value is
gradually increased to obtain the limiting ascending brand
record its outputzb . At eachb value on this branch, a subseque

Fig. 3 Preisach plane with interface L „t …
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monotone decrease is imposed to obtain the first-order reve
curve with its outputzab . By defining the function

Z~a,b!5zb2zab , (4)

the weighting function is determined by

m~a,b!52
1

2

]2Z~a,b!

]a]b
. (5)

3 Stochastic Dynamics

3.1 Mean Square Response.Consider a single-degree-o
freedom nonlinear hysteretic system as shown in Fig. 4. The e
tion of motion of the system is written as

ẍ12z ẋ1kx1z~x,ẋ!5 f ~ t ! (6)

wherex denotes the nondimensional displacement;f (t) represents
an external random excitation;z is the viscous damping coeffi
cient; k is the linear stiffness; andz denotes the nonlinear hyste
etic restoring force governed by the Preisach model Eq.~1!.

When the external excitationf (t) is a stationary Gaussian whit
noise with zero mean, the stationary mean response of the
sach hysteretic system Eq.~6! is zero since the restoring forc
output z in Eq. ~1! approaches zero for a zero-mean station
Gaussian input process~@22#!.

After rewriting the second-order governing differential Eq.~6!
in a first-order differential form of state vector, the covarian
matrix equation of the system response to the stationary Gaus
excitation can be derived using the state equation as

Ẇ~ t !5E@Ẏ~ t !YT~ t !#1E@Y~ t !ẎT~ t !#

5AW~ t !1W~ t !AT1V~ t !1VT~ t !1DF (7)

whereE@•# denotes the expectation operator.Y, W, A, andV are
the state vector, the covariance matrix, the parameter matrix,
the correlation matrix of hysteretic restoring force with respon
respectively. They are expressed as

Y5 H x
ẋJ , (8a)

W5E@YYT#5F E@x2# E@xẋ#

E@ ẋx# E@ ẋ2#
G , (8b)

A5F 0 1

2k 22z
G , (8c)

V5F 0 0

2E@zx# 2E@zẋ#
G . (8d)
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When the response processx becomes stationary, the covar
anceE@xẋ#5E@ ẋx#50 so that the covarianceW is a diagonal
matrix of the mean square response. For a stationary Gaus
white noise excitationf (t) with intensityD/2, the correlation co-
efficient of response to excitation is determined mainly by th
initial relation and the correlation matrixDF is given by

DF5F0 0

0 D/2G . (8e)

For stationary response of the system under stationary ex
tion, the covariance matrixW is constant and thus, Eq.~7!
becomes

AW1WAT1V1VT1DF50. (9)

Equation~9! is a nonlinear algebraic equation and differs fro
the usual Lyapunov equation. In order to obtain the mean squ
response from Eq.~9!, we re-express here the correlation matr
V, or E@zx# and E@zẋ#, in terms of the mean square respons
Since the Preisach weighting functionm~a, b! in Eq. ~1! is deter-
ministic, the correlation coefficientsE@zx# andE@zẋ# can be ex-
pressed in the following form~@21#!:

E@zx#5E E
a<b

m~a,b!E@ ĝab~x!x#dadb (10)

E@zẋ#5E E
a<b

m~a,b!E@ ĝab~x!ẋ#dadb. (11)

By keeping in mind that the elementary hysteresis opera
ĝab(x) is a two-position relay with either11 or 21, the correla-
tion coefficientE@ ĝab(x)x# can be expressed as

Fig. 4 Single-degree-of-freedom nonlinear hysteretic system
E@ ĝab~x!x#5E@1x#P$ĝab~x!511%1E@2x#P$ĝab~x!521%

5~E@xux>a#P$ĝab switching at a%1E@xux>b#P$ĝab switching at b%!P$ĝab~x!511%

1~E@2xux<a#P$ĝab switching at a%1E@2xux<b#P$ĝab switching at b%!P$ĝab~x!521%

5~E@xux>02uxuuxP~0,a!#qa1E@xux>02uxuuxP~0,b!#qb!P$ĝab~x!511%

1~E@2xux<02uxuuxP~0,a!#qa1E@2xux<02uxuuxP~0,b!#qb!P$ĝab~x!521%

5~E@xux>0#2E@ uxuuxP~0,a!# !qa1~E@xux>0#2E@ uxuuxP~0,b!# !qb

5
1

2
E@ uxu#2E@ uxuuxP~0,a!#qa2E@ uxuuxP~0,b!#qb (12)

where P$•% denotes the probability operator. The notationsqa5P$ĝab switching ata% and qb5P$ĝab switching atb%, in which
ĝab(x) switching at x5a (or b) means its value jumping from21 ~or 11! to 11 ~or 21!. Obviously, there hold the probability
relationsP$ĝab(x)511%1P$ĝab(x)521%51 andqa1qb51.

Similarly, the correlation coefficientE@ ĝab(x) ẋ# can be expressed as
MARCH 2002, Vol. 69 Õ 173



E@ ĝab~x!ẋ#5E@1 ẋ#P$ĝab~x!511%1E@2 ẋ#P$ĝab~x!521%

5~E@ ẋux>a,ẋ>0#P$ĝab switching at a%1E@ ẋux>b,ẋ<0#P$ĝab switching at b%!P$ĝab~x!511%

1~E@2 ẋux<a,ẋ>0#P$ĝab switching at a%1E@2 ẋux<b,ẋ<0#P$ĝab switching at b%!P$ĝab~x!521%

5~E@ uẋuux>0,ẋ>02sgn~a!uẋuuxP~0,a!,ẋ>0#qa1E@2uẋuux>0,ẋ<01sgn~b!uẋuuxP~0,b!,ẋ<0#qb!P$ĝab~x!511%

1~E@2uẋuux<0,ẋ>02sgn~a!uẋuuxP~0,a!,ẋ>0#qa1E@ uẋuux<0,ẋ<01sgn~b!uẋuuxP~0,b!,ẋ<0#qb!P$ĝab~x!521%

5sgn~2a!E@ uẋuuxP~0,a!,ẋ>0#qa1sgn~b!E@ uẋuuxP~0,b!,ẋ<0#qb

5
1

2
sgn~2a!E@ uẋuuxP~0,a!#qa1

1

2
sgn~b!E@ uẋuuxP~0,b!!]qb . (13)
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If the random excitation is a stationary Gaussian process,
response of the equivalent linearization system of Eq.~6! is
Gaussian~@25#!. With the assumption of Gaussian process,
mean values of absolute displacementx and velocity ẋ in Eqs.
~12! and ~13! can be evaluated in terms of the mean square
sponses as follows:

E@ uxu#5A2E@x2#

p
(14a)

E@ uxuuxP~0,a!#5AE@x2#

2p S 12expH 2
a2

2E@x2#J D (14b)

E@ uxuuxP~0,b!#5AE@x2#

2p S 12expH 2
b2

2E@x2#J D (14c)

E@ uẋuuxP~0,a!#5AE@ ẋ2#

2p
erfS a

A2E@x2#
D sgn~a! (14d)

E@ uẋuuxP~0,b!#5AE@ ẋ2#

2p
erfS b

A2E@x2#
D sgn~b! (14e)

where the error function erf(•) is defined as

erf~x!5
2

Ap
E

0

x

e2u2
du. (15)

It is known from Eq.~15! that erf(x) is an odd function, i.e., erf
(2x)52erf(x). This function also has the properties erf(0)50 and
erf(6`)561.

3.2 Evaluation of Switching Probabilities. The switching
probabilitiesqa andqb can be calculated by using the mathema
cal machinery of an exit problem~@26#!. Since there exists the
probability relationqa1qb51, only one switching probability,
for example,qa needs to be calculated alternatively. Consider
time evolution of the response process. The switching probab
qa is the sum of disjoint event probabilities of even and o
numbers of switching and thus, can be expressed for diffe
initial states as follows:

qa~ t !55
1

2
P0

1~ t !1(
i 51

`

P2i
1~ t ! ĝab~x0!511

1

2
P0

2~ t !1(
i 50

`

P2i 11
2 ~ t ! ĝab~x0!521

(16)

where the switching probabilities of even and odd numbers a

Pj
6~ t !5PH j numbers of ĝab switching during

time interval ~0,t !uĝab~x0!561 J
~ j 50,1,2, . . . !. (17)
174 Õ Vol. 69, MARCH 2002
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The ĝab(x) switching ata ~or b! takes place at the momen
when the response processx starting from the pointx0 or b ~or a!
exits the semi-infinite interval~2`, b! @or ~a, 1`!# ~@21#!. Based
on the mathematical machinery of this exit problem, the switch
probabilities Pj

6 can be expressed as a convolution form of
series of probability density functions with only oneĝab(x)
switching. The probability density functions are further repr
sented by the corresponding probability functions with noĝab(x)
switching and can be determined by solving the backward K
mogorov equation. It is difficult to analytically solve the Kolmog
orov equation and numerical solution is usually necessary
Laplace transform method has been introduced to solve the e
tion and obtain the solution of switching probabilities~@27#!.
Eventually, the stationary mean-square response is calcul
from Eq.~9! upon the substitution ofqa in Eqs.~10! to ~13!. Since
the correlation matrixV depends on the second moments of
sponse, Eq.~9! is a nonlinear algebraic equation as pointed abo
An iteration solution procedure is used to solve this equation.

3.3 Case of Symmetric Weighting Function. For the hys-
teresis nonlinearity with wiping-out and congruency properti
the Preisach weighting functionm~a, b! possesses a mirror sym
metry with respect to linea1b50 on the Preisach plane, i.e
m(2b,2a)5m(a,b) ~@3#!. The symmetric weighting function
means that the possibleĝab(x) switching events appear in
couples, and the two switching probabilities of each couple
almost equal since the mean response is zero. Under this ass
tion and using the relationqa1qb51, we haveqa>qb>1/2.

With the assumptionqa>qb>1/2, the correlation coefficients
E@ ĝab(x)x# andE@ ĝab(x) ẋ# in Eqs.~12! and ~13! become

E@ ĝab~x!x#5
1

2
~E@ uxu#2E@ uxuuxP~0,a!#2E@ uxuuxP~0,b!# !

5AE@x2#

8p
~e2a2/2E@x2#1e2b2/2E@x2#! (18)

E@ ĝab~x!ẋ#5
1

4
E@ uẋuuxP~a,b!#

(19)

5AE@ ẋ2#

32p FerfS b

A2E@x2#
D 2erfS a

A2E@x2#
D G .

The Gaussian distribution function has been widely adopted
a parameterized expression of the weighting function in the h
teresis modeling~@28,29#!. In the Gaussian distribution form, th
symmetric Preisach weighting function can be expressed as

m~a,b!5H 1

2ps2 expH 2
~a1n!21~b2n!2

2s2 J a0<a<0
0<b<b0

0 elsewhere
(20)
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additional specification. The Preisach weighting function is same
wheres andn are the model parameters governing the width a
area of hysteresis loops;a052b0 .

By substituting Eqs.~18! to ~20! into Eqs.~10! and ~11!, the
correlation coefficients of hysteretic restoring force with respon
E@zx# andE@zẋ#, can be obtained as follows:

E@zx#5
E@x2#

A32p~s21E@x2# !
e2~n2/2~s21E@x2# !!H FerfS n

&s
D

1erfS b02n

&s
D G•FerfS n

&s
A E@x2#

s21E@x2# D
2erfS a0

&s
As21E@x2#

E@x2#
1

n

&s
A E@x2#

s21E@x2# D G
1FerfS n

&s
D 2erfS a01n

&s D G•FerfS n

&s
A E@x2#

s21E@x2# D
1erfS b0

&s
As21E@x2#

E@x2#
2

n

&s
A E@x2#

s21E@x2# D G J
(21)

E@zẋ#5AE@ ẋ2#

32p H FerfS n

&s
D 2erfS a01n

&s
D G

•FergS b02n

&s
,v~u!5

&su1n

A2E@x2#
D 2ergS 2n

&s
,v~u!

5
&su1n

A2E@x2#
D G2FerfS b02n

&s
D 1erfS n

&s
D G

•FergS n

&s
,v~u!5

&su2n

A2E@x2#
D 2ergS a01n

&s
,v~u!

5
&su2n

A2E@x2#
D G J (22)

where the function erg(•,•) is defined by

erg@x,y~u!#5
2

Ap
E

0

x

e2u2
erf@y~u!#du. (23)

In the degenerated case with the weighting parametern50, the
correlation coefficients~21! and ~22! become
Journal of Applied Mechanics
nd

se,

E@zx#5
2E@x2#

A32p~s21E@x2# !
FerfS b0

&s
D erfS a0

&s
As21E@x2#

E@x2# D
1erfS a0

&s
D erfS b0

&s
As21E@x2#

E@x2# D G (24)

E@zẋ#5AE@ ẋ2#

32p FerfS b0

&s
D ergS a0

&s
,v~u!5

su

AE@x2#
D

2erfS a0

&s
D ergS b0

&s
,v~u!5

su

AE@x2#
D G (25)

4 Numerical Example
A numerical example is presented to verify the validity of t

derived formulas for the correlation coefficients in the case
symmetric Preisach weighting function and to evaluate the m
square response of the Preisach hysteretic system. In this exa
the Preisach weighting functionm~a, b! is taken as Eq.~20! with
the parametersa0524.0 andb054.0. Different values of the
weighting parameterss andn are used in numerical computation
Figure 5 shows the hysteresis loops corresponding to the Prei
weighting function with the parameterss50.1 andn52.0 under
a decayed sinusoidal input.

Tables 1, 2, and 3 show a comparison of the predicted value
the correlation coefficientE@zx# computed by using Eq.~21! and
obtained from the digital simulation. The results are obtained
der different values of the parameterss andn. A good agreement
between the two sets of results is observed, even in the dege
ated case of the weighting parametern50. It should be noted tha
the error between the two approaches might be also due to
approximation in generating pseudo-random numbers in the d
tal simulation. It is therefore concluded that the assumption of
equal switching probabilitiesqa andqb in the case of symmetric
Preisach weighting function holds to a significant extent. Eq
tions ~21! and ~22! are good approximation for the correlatio
coefficients in the case of symmetric Gaussian distribut
weighting function, which greatly facilitate the evaluation
mean square response of Preisach hysteretic systems.

Then the mean square responses of a Preisach hysteretic s
subjected to a stationary Gaussian white noise excitation are
lyzed by means of the proposed method. The system parame
hysteresis parameters and excitation intensity are taken ak
51.0,z50.1,s50.1,n51.0,b052a054.0 andD54.0 except
Fig. 5 Hysteresis loops
MARCH 2002, Vol. 69 Õ 175
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as the above. Figure 6 shows the mean square responses a
the excitation intensityD, and Figs. 7 and 8 show the mean squa
responses against the linear stiffnessk under different viscous
dampingz. In these figures, direct digital simulation results a
also given for comparison. A good coincidence between the
sults obtained by the digital simulation and by the present met
is observed. Figures 9 and 10 show the mean square respo
versus the weighting parameters under different excitation inten
sity D. It is seen that with the increase of the parameters, the
mean square responses decrease at the outset, and then in

Fig. 6 Mean square response versus excitation intensity D

Table 1 Predicted results of correlation coefficient for weight-
ing parameter nÄ1.0 „EÄ†zx ‡-analytical evaluation;
E†zx ‡s-digital simulation …

s E@zx# E@zx#s Error ~%!

0.20 0.48376 0.48279 0.20
0.15 0.48388 0.49742 0.73
0.10 0.48393 0.49137 1.51
0.05 0.48394 0.49374 1.98
0.01 0.48394 0.49512 2.26

Table 2 Predicted results of correlation coefficient for weight-
ing parameter sÄ0.1 „EÄ†zx ‡-analytical evaluation;
E†zx ‡s-digital simulation …

n E@zx# E@zx#s Error ~%!

0.5 0.70150 0.71298 1.61
0.6 0.66433 0.67453 1.51
0.7 0.62292 0.63101 1.28
0.8 0.57834 0.58320 0.83
0.9 0.53166 0.53586 0.78
1.0 0.48393 0.49137 1.51
1.1 0.43615 0.44762 2.56
1.2 0.38921 0.40326 3.48
1.3 0.34390 0.35809 3.96
1.4 0.30087 0.31345 4.01

Table 3 Predicted results of correlation coefficient for weight-
ing parameter nÄ0 „EÄ†zx ‡-analytical evaluation;
E†zx ‡s-digital simulation …

s E@zx# E@zx#s Error ~%!

0.20 0.19560 0.19579 0.10
0.15 0.19726 0.19764 0.19
0.10 0.19848 0.19888 0.20
0.05 0.19922 0.19936 0.07
0.01 0.19946 0.19815 0.66
176 Õ Vol. 69, MARCH 2002
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smoothly. Whens is less than 0.03, the mean square respon
sharply drop with the increase ofs. In the range ofs from 0.03 to
0.20, the mean square responses almost do not vary withs. Fig-
ures 11 and 12 show the mean square responses versus the w
ing parametern under different excitation intensityD. It is ob-
served that the mean square responses decrease with the inc
of the parametern, but tend to be steady whenn is greater than 1.4
for the mean square displacement and 1.8 for the mean sq

Fig. 8 Mean square velocity versus stiffness k

Fig. 9 Mean square displacement versus weighting parameter
s

Fig. 7 Mean square displacement versus linear stiffness k
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alue,
velocity. Figures 13 and 14 show the mean square responses
sus the weighting parameterb0 under different combination of the
parameterss andn. It is seen that there exists a sudden drop in
mean square responses with the increase of the parameterb0 . In
the case ofs50.1 andn51.0, the mean square responses trend
a low constant value whenb0 is greater than 1.2. In the degene

Fig. 10 Mean square velocity versus weighting parameter s

Fig. 11 Mean square displacement versus weighting param-
eter n

Fig. 12 Mean square velocity versus weighting parameter n
Journal of Applied Mechanics
ver-

he

to
r-

ated case of the weighting parametern50, as shown in Fig. 15,
the mean square responses decrease slowly with the increa
the weighting parameters. Figure 16 shows that the mean squa
displacement drops sharply and then trends to a constant v
while the mean square velocity varies smoothly.

Fig. 13 Mean square displacement versus weighting param-
eter b0

Fig. 14 Mean square velocity versus weighting parameter b0

Fig. 15 Mean square response versus weighting parameter
s„nÄ0…
MARCH 2002, Vol. 69 Õ 177



r

b
t
l
e

-

e

.
o
i
t
c
d

n

for

64.
of

in-
-

eta-

r Pi-

tua-

and

Be-
e of
ch.

f

tate

nd

nd-

of
y
.,

g

pp.

em
,’’

tic

to-

els

h

n-
:

er

,’’

f
n

sis
:

m-
5 Conclusions
The Preisach model has been shown great promise for mo

ing the nonlinear constitutive relation of hysteretic materials a
devices. In this paper, a new method for analyzing nonlinear
dom dynamic response of the Preisach hysteretic system u
stationary Gaussian white noise excitation was developed.
proposed method is based on covariance and switching proba
analysis in considering the integral form of the Preisach cons
tive relationship. Simplified formulas for evaluating the corre
tion coefficients of hysteretic restoring force with response w
derived for the symmetric Preisach weighting function based
the approximation of equal ‘‘up’’ and ‘‘down’’ switching prob
abilities. Although this study addressed only the single-degree
freedom Preisach hysteretic system subjected to stationary
dom excitation, the proposed method can be extended to ana
multi-degree-of-freedom Preisach systems under stationary
nonstationary excitation. An example of the Preisach hyster
system with the Gaussian distribution weighting function w
given to evaluate the mean square responses by using the
posed method and to verify the validity of the derived formulas
good agreement was observed between the predicted values
correlation coefficients using the simplified formulas and us
digital simulation. The numerical results also showed that
mean square responses of the Preisach hysteretic system de
with the increase of linear stiffness and viscous damping, an
general, are more sensitive to the weighting parametern than to
the weighting parameters and the weighting rangeb0 ~or a0!. It
was found that the mean square responses suffer a sharp drop
the increase of the parameterb0 and are affected only in a certai
range of the Preisach weighting function.
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In-Plane Wave Propagation
Through Elastic Solids With a
Periodic Array of Rectangular
Defects
In the context of wave propagation in damaged (elastic) solids, an analytical approa
developed to study normal penetration of a longitudinal plane wave into a periodic a
of rectangular defects. Reducing the problem to some integral equations holding ov
base and height of the openings, a direct numerical method is applied to give a com
solution for various exact or approximated forms. Several figures show the peculiariti
the structure and lead to physical conclusions.@DOI: 10.1115/1.1430235#
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1 Introduction
In the frame of wave propagation through~solid! continuous

media with irregular distributed defects, many researches h
been devoted to study the reflection and transmission propertie
the given lattice with respect to some incident wave. For regu
~periodic! distributions in a two-dimensional context, which a
those contemplated in the present paper, there are mainly
types of approach to the scattering problem. The first one, m
often used, resorts to well-known numerical algorithms for so
ing certain integral equations based on the length or the surfac
the defects and originated from natural boundary conditions. T
line of research is deeply concerned in the numerous papers
formed by Achenbach et al.~see, e.g.,@1–5#!, where several geo
metric configurations, for not too high frequency, are taken i
account.

The other type of approach is more analytical. Along with t
important results obtained in~@6–11#!, we would also mention our
previous papers~@12–16#!, in which a new—quite general—
analytical method has been introduced for various scattering p
lems in theone-moderange of frequency. Starting from integra
equations based on the opening between neighboring defects
originated by continuity assumptions, we were able to put do
explicit formulas for the relevant parameters by means of a m
~uniform! approximation valid in that range. In many cases,
also solved analytically the main integral equations, thus arriv
at the complete solution of the problem.

Of course, the geometrical form of the defects is crucial for
scattering problems, whatever be the method of approach
would be preferable to consider more and more irregular fo
~even unknown!, until now being considered rather simple form
such as slit-type, circular, and rectangular defects. The latter
has been fully treated by numerical methods~of engineering type!
in an acoustic context~@17,18#!, and only recently by analytica
methods for a scalar problem in elastic context~@16#!. In this
paper we aim to carry on, as analytically as possible, the stud
rectangular scatterers in an elastic context, and precisely to
sider the vector problem for the normal incidence of a longitudi
plane wave onto a periodic~vertical! array of rectangular defect

Contributed by the Applied Mechanics Division ofTHE AMERICAN SOCIETY OF ME-

CHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, April 2, 200
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should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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in an elastic medium. Of course, this is equivalent to consider
regular openings periodically distributed in a vertical screen
finite thickness inside the medium. Assuming the dependence
time of the harmonic type, we will employ both continuity an
boundary conditions to lay down some~systems of! integral equa-
tions that hold over the base and the height of such openings,
whose unknowns turn out to provide a complete analytical rep
sentation of the scattered field in the whole structure, includ
the reflection and transmission coefficients. A direct numeri
method will then be applied to solve such integral equations
exact form ~as they arise! as well as in various approximate
forms. Finally, several figures reflecting the numerical results w
permit us to evaluate the influence of the physical and geomet
parameters on the wave properties of the structure, and som
teresting remarks will be derived.

It should be finally noted that the incidence of a longitudin
wave in a two-dimensional medium gives rise to the so-cal
in-planeproblem for the propagation of theSV- andP-type waves
~@19#!. This problem in connection with periodically distribute
rectangular defects is here tackled analytically for the first tim

2 Formulation of the Problem: Boundary Conditions
The geometrical structure is quite similar to that considered

~@16#!: We have an unbounded two-dimensional elastic medium
which there is an infinite, periodic array of rectangular defe
~see Fig. 1!. The period of the grating is2a, the opening, i.e., the
distance between two neighboring defects is2b ~around uyu
50,2a,4a,...) and thelength of the horizontal side of the rec
angles is 2l ~aroundx50).

In the assumed harmonic regime, the time-dependence imp
the common factore2 ivt in all the field variables; we omit
throughout this indication, and prefer to express the displacem
field u[(ux ,xy) by means of the following~Green-Lame` type!
representation:

ux5
]w

]x
1

]c

]y
, uy5

]w

]y
2

]c

]x
(2.1)

in which thedisplacement potentialsw(x,y) and c(x,y) satisfy
throughout the Helmholtz equations:

]2w/]x21]2w/]y21k1
2w50, ]2c/]x21]2c/]y21k2

2c50.

Above,v is the circular frequency, andk1 ,k2 denote the longitu-
dinal and transverse wave numbers; of course,v/k1[c1 and
v/k2[c2 give the respective wave speeds of the material in c
cern (c1.c2).
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The following ~linear! constitutive equations for the relevan
stress components hold throughout:

txy5tyx5c2
2S 2

]2w

]x]y
2

]2c

]x2 1
]2c

]y2 D (2.2a)

sx5c1
2S ]2w

]x2 1
]2w

]y2 D22c2
2S ]2w

]y22
]2c

]x]yD (2.2b)

sy5c1
2S ]2w

]x2 1
]2w

]y2 D22c2
2S ]2w

]x2 1
]2c

]x]yD (2.2c)

~putting the constant density equal to 1!.
In the considered structure, an incident longitudinal plane w

of the form

w inc5eik1x, c inc50

is entering from2`, giving rise to scattered fields in the left (x
,2 l ), central (uxu, l ), and right (x. l ) parts. Thanks to the
natural symmetry and periodicity alongy, the problem can be
obviously restricted to the typical layeruyu,a with a narrowing
uyu,b of length 2l. By the same token, we can represent t
potentials in the left and right parts of this layer as follows:

w left~x,y!5eik1~x1 l !1Re2 ik1~x1 l !1(
n51

`

Aneqn~x1 l !cos~pny/a!

(2.3a)

c left~x,y!5(
n51

`

Bner n~x1 l !sin~pny/a! ~x,2 l ,uyu,a!,

(2.3b)

w right~x,y!5Teik1~x2 l !1(
n51

`

Cne2qn~x2 l !cos~pny/a!

(2.4a)

c right~x,y!5(
n51

`

Dne2r n~x2 l !sin~pny/a! ~x. l ,uyu,a!,

(2.4b)

where it holds that

qn5A~pn/a!22k1
2, r n5A~pn/a!22k2

2, n51,2,3,...,
(2.5)

in order for the Helmholtz equations to be trivially solved by ea
term of the above series.

Note that such representations identically satisfy the nat
boundary conditions at the edges of the two semilayers:

uy~x,6a!5txy~x,6a!;sin~pny/a!uy56a50, uxu. l .

Moreover, theone-mode assumptionfor frequency, namely

0,k1,k2,~p/a!, (2.6)

Fig. 1 Normal penetration of a longitudinal plane wave into a
periodic array of rectangular defects 2 lÃ2„aÀb …
180 Õ Vol. 69, MARCH 2002
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assures that allqns and r ns are real and positive; as a cons
quence, constantsR andT can attain their full meaning asreflec-
tion andtransmissioncoefficients, respectively, since at large di
tances from the defects’ array only the terms containing the
with the given~longitudinal! wave number, will remain nonvan
ishing in the scattered field of Eqs.~2.3!, ~2.4!.

In the central~rectangular! part uxu, l , uyu,b, we begin by
writing the potentials as superpositions of their even and odd c
ponents~with respect tox!

wcent5wcent
1 1wcent

2 , ccent5ccent
2 1ccent

1

and then represent them in the following mannner:

wcent
1 ~x,y!5E0

1 cos~k1x!1(
n51

`

En
1ch~pnx!cos~pny/b!

1F0
1 cos~k1y!1(

n51

`

Fn
1ch~vny!cos~pnx/ l !,

(2.7a)

wcent
2 ~x,y!5E0

2sin~k1x!1(
n51

`

En
2sh~pnx!cos~pny/b!

1(
n51

`

Fn
2ch~vny!sin~pnx/ l !, (2.7b)

ccent
1 ~x,y!5(

n51

`

Pn
1sh~snx!sin~pny/b!

1(
n51

`

Qn
1sh~wny!sin~pnx/ l !, (2.8a)

ccent
2 ~x,y!5(

n51

`

Pn
2ch~snx!sin~pny/b!1Q0

2 sin~k1y!

1(
n51

`

Qn
2sh~wny!cos~pnx/ l ! ~ uxu, l ,uyu,b!,

(2.8b)

where it holds

pn5A~pn/b!22k1
2, vn5A~pn/ l !22k1

2,
(2.9)

sn5A~pn/b!22k2
2, wn5A~pn/ l !22k2

2

for the same reason as before.
In the sequel, we will find convenient to put

an5pn/a, bn5pn/b, l n5pn/ l .

Further, where needed, all field variables will be labeled asleft,
cent(ral) or right according to the region in which they are co
sidered. For all fields involved in the central region, we will al
distinguish, by proper labels~1 or 2!, between the component
coming fromwcent

1 , ccent
1 and those coming fromwcent

2 , ccent
2 ~via

Eqs. ~2.1! or ~2.2!!. In this connection, note that, with respect
x, ux2

cent, uy1
cent, txy2

cent , sx1
cent are even functions, while

ux1
cent, uy2

cent, txy1
cent , sx2

cent are odd.
Of course, the sides of the defects cannot sustain stresses

implies the following boundary conditions to hold in the typic
layer:

txy
left~2 l ,y!5sx

left~2 l ,y!

5txy
right~ l ,y!5sx

right~ l ,y!50, b,uyu,a;

(2.10)

sy
cent~x,6b!50, txy

cent~x,6b!50, uxu, l . (2.11)
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All the capital letters in the above representations of the to
wave field denote unknown constants. Following the guideline
our analytical approach, the next task is to introduce some
~unknown! functions in terms of which all these constants can
expressed. In this connection, if we put

txy
left~2 l ,y![ H g1

t~y!, uyu,b
0, b,uyua,

sx
left~2 l ,y![H g1

s~y!, uyu,b

0, b,uyu,a
(2.12)

txy
right~ l ,y![H g2

t~y!, uyu,b

0, b,uyu,a,

sx
right~ l ,y![H g2

s~y!, uyu,b

0, b,uyu,a
(2.13)

~recall Eqs.~2.10!!, then an assumption of continuity betwee
neighboring regions leads to

g1
t~y!5txy

cent~2 l ,y!52txy1
cent~ l ,y!1txy2

cent~ l ,y!,

g2
t~y!5txy

cent~ l ,y!, (2.14)

g1
s~y!5sx

cent~2 l ,y!5sx1
cent~ l ,y!2sx2

cent~ l ,y!,

g2
s~y!5sx

cent~ l ,y!, uyu,b. (2.15)

We also put

uy1
cent~x,b![gu

1~x!, uy2
cent~x,b![gu

2~x!, uxu, l . (2.16)

These equations are the starting point of our procedure. In th
functionsg1,2

t andg1,2
s are physically related to the stress comp

nents along the borderlines; the geometrical symmetry imp
they are odd and even functions, respectively. Of course,gu

1 is
even andgu

2 is odd.

3 Analytical Representations
We now aim to derive formulas for all unknown constants

the total field in terms of the six functionsg just introduced. For
the sake of clarity, let us begin by calculating all fields involved
Eqs. ~2.11!2–~2.16!. In view of constitutive Eqs.~2.2! and wave
field representations~2.1!, ~2.3!, ~2.4!, ~2.7!, and~2.8!, we have

txy
left~2 l ,y!5c2

2(
n51

`

@22qnanAn2~2an
22k2

2!Bn#sinany,

(3.1a)

txy
right~ l ,y!5c2

2(
n51

`

@2qnanCn2~2an
22k2

2!Dn#sinany,

(3.1b)

sx
left~2 l ,y!52c1

2k1
2~11R!1c2

2(
n51

`

@~2an
22k2

2!An

12anr nBn#cosany, (3.1c)

sx
right~ l ,y!52c1

2k1
2T1c2

2(
n51

`

@~2an
22k2

2!Cn22anr nDn#cosany,

(3.1d)

txy1
cent~ l ,y!5c2

2(
n51

`

@22pnbn sh~pnl !En
1

2~2bn
22k2

2!sh~snl !Pn
1#sin~bny!, (3.1e)
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sx1
cent~ l ,y!5c2

2H 2k2
2E0

1cos~k1l !1~2k1
22k2

2!F0
1 cos~k1y!

1(
n51

`

@~2bn
22k2

2!ch~pnl !En
1

12bnsnch~snl !Pn
1#cos~bny!1 (

m51

`

~21!m

3@~22vm
2 2k2

2!Fm
1 ch~vmy!

12l mwmQm
1 ch~wmy!#J , (3.1f)

txy2
cent~ l ,y!5c2

2H (
n51

`

@22pnbn ch~pnl !En
2

2~2bn
22k2

2!ch~snl !Pn
2#sin~bny!

1 (
m51

`

~21!m@2vml mFm
2 sh~vmy!

1~2l m
2 2k2

2!Qm
2 sh~wmy!#J , (3.1g)

sx2
cent~ l ,y!5c2

2H 2k2
2E0

2 sin~k1l !1(
n51

`

@~2bn
22k2

2!sh~pnl !En
2

12bnsn sh~snl !Pn
2#cosbnyJ , (3.1h)

txy1
cent~x,6b!56c2

2(
n51

`

@22l nvn sh~vnb!Fn
1

1~2l n
22k2

2!sh~wnb!Qn
1#sin~ l nx!, (3.1i)

txy2
cent~x,6b!56c2

2(
n51

`

@2l nvn sh~vnb!Fn
2

1~2l n
22k2

2!sh~wnb!Qn
2#cos~ l nx!

7c2
2Q0

2k1
2 sin~k1b!, (3.1l)

uy1
cent~x,b!5(

n51

`

@vn sh~vnb!Fn
1

2 l n sh~wnb!Qn
1#cos~ l nx!2k1 sin~k1b!F0

1 ,

(3.1m)

uy2
cent~x,b!5(

n51

`

@vn sh~vnb!Fn
21 l n sh~wnb!Qn

2#sin~ l nx!.

(3.1n)

From Eq.~2.11!2 , in view of ~3.1i,l!, we get

22l nvn sh~vnb!Fn
11~2l n

22k2
2!sh~wnb!Qn

150, (3.2a)

2l nvn sh~vnb!Fn
21~2l n

22k2
2!sh~wnb!Qn

250, (3.2b)

Q0
250. (3.2c)

From Eqs.~2.16!, in view of (3.1m,n), by simple integration
over uxu, l we get

F0
15

21

2lk1 sin~k1b!E2 l

l

gu
1~j!dj (3.3)
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~and E 2 l
l gu

2(j)dj50, that is obvious sincegu
2 is odd!, while by

integration after multiplying~2.16!1 by coslmx and ~2.16!2 by
sin lmx (m51,2,...), we get further, respectively~by orthogonal-
ity!:

vn sh~vnb!Fn
12 l n sh~wnb!Qn

15
1

l E2 l

l

gu
1~j!cos~ l nj!dj,

(3.4a)

vn sh~vnb!Fn
21 l n sh~wnb!Qn

25
1

l E2 l

l

gu
2~j!sin~ l nj!dj.

(3.4b)

The following values can be easily deduced from~3.2a,b!, ~3.4!:

Fn
15Qn

1
~2l n

22k2
2!sh~wnb!

2l nvn sh~vnb!
5

2
2l n

22k2
2

lk2
2vn sh~vnb!

E
2 l

l

gu
1~j!cos~ l nj!dj, (3.5a)

Fn
252Qn

2
~2l n

22k2
2!sh~wnb!

2l nvn sh~vnb!

52
2l n

22k2
2

lk2
2vn sh~vnb!

E
2 l

l

gu
2~j!sin~ l nj!dj. (3.5b)

From Eqs.~2.12!, in view of ~3.1a,c!, by integration overuyu
,a we get *2b

1bg1
t(h)dh50 ~obvious! and 22ac1

2k1
2(11R)

5*2b
1bg1

s(h)dh, whence:

R5212
1

2ac1
2k1

2E
2b

b

g1
s~h!dh. (3.6)

On repeating the integration after multiplying~2.12!1 and~2.12!2
by sinamy and cosamy (m51,2,...), respectively, we also get th
following 232 linear system~by orthogonality!:

5 22qnanAn2~2an
22k2

2!Bn5
1

ac2
2E

2b

b

g1
t~h!sin~anh!dh

~2an
22k2

2!An12r nanBn5
1

ac2
2E

2b

b

g1
s~h!cos~anh!dh

that gives

An5
2r nan

ac2
2Dn

E
2b

b

g1
t~h!sin~anh!dh

1
2an

22k2
2

ac2
2Dn

E
2b

b

g1
s~h!cos~anh!dh, (3.7a)
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e

Bn52
2an

22k2
2

ac2
2Dn

E
2b

b

g1
t~h!sin~anh!dh

2
2anqn

ac2
2Dn

E
2b

b

g1
s~h!cos~anh!dh, (3.7b)

where Dn5(2an
22k2

2)224an
2qnr n is the well-known Rayleigh

function ~@19#!.
From Eqs.~2.13!, by analogous procedure~in view of ~3.1b,d!!,

we get*2b
1bg2

t(h)dh50 and

T52
1

2ac1
2k1

2E
2b

b

g2
s~h!dh, (3.8)

Cn52
2r nan

ac2
2Dn

E
2b

b

g2
t~h!sin~anh!dh

1
2an

22k2
2

ac2
2Dn

E
2b

b

g2
s~h!cos~anh!dh, (3.9a)

Dn52
2an

22k2
2

ac2
2Dn

E
2b

b

g2
t~h!sin~anh!dh

1
2anqn

ac2
2Dn

E
2b

b

g2
s~h!cos~anh!dh. (3.9b)

From Eqs.~2.14! and ~2.15!, by difference and summation, re
spectively, we get

~g2
t2g1

t !~y!52txy1
cent~ l ,y!, ~g1

s1g2
s!~y!52sx1

cent~ l ,y!,

uyu,b. (3.10)

See Eqs.~3.1e,f!: The first equation above involves constantsEn
1

and Pn
1 ; the second one, besides these andE0

1 , involves F0
1 ,

Fn
1 , Qn

1 , which are known~in terms ofgu
1) and can be substi-

tuted from Eqs.~3.3! and ~3.5a!. Made this, a simple integration
of Eq. ~3.10!2 over uyu,b gives

E0
152

1

2bk2
2 cos~k1l !F 1

2c2
2E

2b

b

~g1
s1g2

s!~h!dh

1
2k1

22k2
2

k1 sin~k1l !E2 l

l

gu
1~j!cos~k1j!djG . (3.11)

Further, on multiplying Eqs.~3.10!1 and ~3.10!2 by sinbmy and
cosbny (m,n51,2,...), respectively, and then integrating overuyu
,b, we get the following 232 linear system~by orthogonality!:
5
22pnbn sh~pnl !En

12~2bn
22k2

2!sh~snl !Pn
15

1

2bc2
2E

2b

b

~g2
t2g1

t !~h!sin~bnh!dh,

~2bn
22k2

2!ch~pnl !En
112snbn ch~snl !Pn

15
1

2bc2
2E

2b

b

~g1
s1g2

s!~h!cos~bnh!dh

1
2~21!n

bk2
2 E

2 l

l

gu
1~j!F ~2bn

22k2
2!~22pn

22k2
2!

2pn sh~pnl !
ch~pnj!1

2bn
2sn

sh~snl !
ch~snj!#dj,
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e of

.

that gives

En
15

snbnch~snl !

Pn
1bc2

2 E
2b

b

~g2
t2g1

t !~h!sin~bnh!dh

1
~2bn

22k2
2!sh~snl !

Pn
1 H 1

2bc2
2E

2b

b

~g1
s1g2

s!~h!cos~bnh!dh

1
2~21!n

bk2
2 E

2 l

l

gu
1~j!F ~2bn

22k2
2!~22pn

22k2
2!

2pn sh~pnl !
ch~pnj!

1
2bn

2sn

sh~snl !
ch~snj!GdjJ , (3.12a)

Pn
152

~2bn
22k2

2!ch~pnl !

Pn
12bc2

2 E
2b

b

~g2
t2g1

t !~h! sin~bnh!dh

2
2pnbnsh~pnl !

Pn
1 H 1

2bc2
2E

2b

b

~g1
s1g2

s!~h!cos~bnh!dh

1
2~21!n

bk2
2 E

2 l

l

gu
1~j!F ~2bn

22k2
2!~22pn

22k2
2!

2pnsh~pnl !
ch~pnj!

1
2bn

2sn

sh~snl !
ch~snj!GdjJ , (3.12b)

where we put

)
n

1

5~2bn
22k2

2!2sh~snl !ch~pnl !24bn
2pnsnsh~pnl !ch~snl !.

To obtain formulas~3.11!, ~3.12! we used some results from
series’ tables:

(
m51

`

~21!m
cos~mx!

b2m21a2 5
1

2 F p

ab

ch~ax/b!

sh~pa/b!
2

1

a2G ,
(3.13)

(
m51

`

~21!m cos~mx!521/2, (
m51

`

~21!mm2 cos~mx!50,
Journal of Applied Mechanics
and needed to calculate the following summations:

(
m51

`

~21!m
22vm

2 2k2
2

vm
2 ~2l m

2 2k2
2!cos~ l mj!

5
~2k1

22k2
2!k2

2

2 F l

k1

cos~k1j!

sin~k1l !
2

1

k1
2G , (3.14a)

(
m51

`

~21!m
22vm

2 2k2
2

l m
2 1pn

2 ~2l m
2 2k2

2!cos~ l mj!

5
~2bn

22k2
2!~22pn

22k2
2!l

2pn

ch~pnj!

sh~pnl !
1

~2k1
22k2

2!k2
2

2pn
2 ,

(3.14b)

(
m51

`

~21!m
l m
2 wm

2

l m
2 1sn

2 cos~ l mj!5
bn

2lsn

2

ch~snj!

sh~snl !
.

Of couse, the above results should be interpreted in the sens
generalized summationsof the Abel-Poisson type~@20#!.

There remainsE0
2 , En

2 , Pn
2 to be calculated. Parallel to Eq

~3.10!, by summation of Eqs.~2.14! and the difference of~2.15!,
we get, respectiveluy

~g1
t1g2

t !~y!52txy2
cent~ l ,y!, ~g2

s2g1
s!~y!52sx2

cent~ l ,y!,

uyu,b. (3.15)

In the first of these equations, the values forFn
2 , Qn

2 ~see Eq.
~3.1g!! in terms of gu

2 can be substituted from Eqs.~3.5b!. A
simple integration of Eq.~3.15)2 over uyu,b gives, in view of
~3.1h!

E0
25

21

4bc2
2k2

2 sin~k1l !E2b

b

~g2
s2g1

s~h!dh, (3.16)

while, on multiplying Eqs.~3.15!1 and ~3.15!2 by sinbny and
cosbmy (n,m51,2,...), respectively, and integrating overuyu,b,
we get the following 232 linear system~by orthogonality!:
5
22pnbn ch~pnl !En

22~2bn
22k2

2!ch~snl !Pn
25

1

2bc2
2E

2b

b

~g1
t1g2

t !~h! sin~bnh!dh1
2bn~21!n

bk2
2 ~2pn

21k2
2!

3E
2 l

l

gu
2~j!Fsh~snj!

sh~snl !
2

sh~pnj!

sh~pnl ! Gdj,

~2bn
22k2

2!sh~pnl !En
212snbn sh~snl !Pn

25
1

2bc2
2E

2b

b

~g2
s2g1

s!~h!cos~bnh!dh,
that gives

En
25

~2bn
22k2

2!ch~snl !

2bc2
2Pn

2 E
2b

b

~g2
s2g1

s!~h!cos~bnh!dh

1
2snbnsh~snl !

Pn
2 H 1

2bc2
2E

2b

b

~g1
t1g2

t !~h!sin~bnh!dh

1
2bn~21!n

bk2
2 ~2pn

21k2
2!E

2 l

l

gu
2~j!Fsh~snj!

sh~snl !
2

sh~pnj!

sh~pnl ! GdjJ ,

(3.17a)
Pn
252

2pnbn ch~pnl !

2bc2
2Pn

2 E
2b

b

~g2
s2g1

s!~h!cos~bnh!dh

2
~2bn

22k2
2!sh~pnl !

Pn
2 H 1

2bc2
2E

2b

b

~g1
t1g2

t !~h! sin~bnh!dh

1
2bn~21!n

bk2
2 ~2pn

21k2
2!E

2 l

l

gu
2~j!Fsh~snj!

sh~snl !
2

sh~pnj!

sh~pnl ! GdjJ ,

(3.17b)

where we put
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e

l

for
us
e

)
n

2

5~2bn
22k2

2!2sh~pnl !ch~snl !24bn
2pnsnsh~snl !ch~pnl !.

To obtain formulas~3.17!, we used these results from serie
tables:

(
m51

`

~21!m
m sin~mx!

b2m21a2 52
p

2b2

sh~ax/b!

sh~pa/b!
,

(
m51

`

~21!mm sin~mx!50, (3.18)

and needed to calculate the following summations~see the remark
after Eqs.~3.14!!:

(
m51

`

~21!m
l m~2l m

2 2k2
2!

l m
2 1pn

2 sin~ l mj!5
l

2
~2pn

21k2
2!

sh~pnj!

sh~pnl !
,

(3.19)

(
m51

`

~21!m
l m~2l m

2 2k2
2!

l m
2 1sn

2 sin~ l mj!5
l

2
~2pn

21k2
2!

sh~snj!

sh~snl !
.

This derivation completes the aim of the present section.

4 Reduction to Integral Equations
As field equations~along the edges of the central part of th

layer!, we will employ continuity assumptions for the displac
ment field between neighboring regions, namely

ux
left~2 l ,y!5ux

cent~2 l ,y!, ux
right~ l ,y!5ux

cent~ l ,y!, (4.1)

uy
cent~2 l ,y!5uy

cent~2 l ,y!, uy
right~ l ,y!5uy

cent~ l ,y!, uyu,b,
(4.2)

and the~traction-free! boundary condition~2.11!1 as follows:

sy1
cent~x,b!50, sy2

cent~x,b!50, uxu, l . (4.3)

Due to convenience for further calculations, we prefer to der
from these six equations two~disjoint! 333 systems of integra
equations: one, involving the plus components~1! of the central
fields, for the unknown functions (g1

s1g2
s)(y), (g2

t2g1
t)(y),

gu
1(x), 2 and one, involving the minus components~2!, for the

unknown functions (g2
s2g1

s)(y), (g1
t1g2

t(y), gu
2(x).

Then, by taking the difference of~4.1! and summation of~4.2!,
we get the following two equations, respectively,

ux
right~ l ,y!2ux

left~2 l ,y!52ux1
cent~ l ,y!, (4.4)

uy
right~ l ,y!1uy

left~2 l ,y!52uy1
cent~ l ,y!, (4.5)

which, in view of Eqs.~2.1!, ~2.3!, ~2.4!, ~2.7!, ~2.8!, imply

(
n51

`

$2@pn sh~pnl !En
11bn sh~snl !Pn

1#cos~bny!1@qn~An1Cn!

1an~Bn2Dn!#cos~any!%

5 ik1~T211R!~12k1 sin~k1l !E0
1 , uyu,b, (4.6)

(
n51

`

$2@bn ch~pnl !En
11sn ch~snl !Pn

1#sin~bny!2@an~An1Cn!

1r n~Bn2Dn!#sin~any!22@Fn
1vn sh~vny!

2Qn
1l n sh~wny!#~21!n%12k1F0

1 sin~k1y!50, uyu,b.

(4.7)

From Eq.~4.3!1 , in view of Eqs.~2.2c!, ~2.7!, ~2.8!, we also get
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e
-

ive

(
n51

`

$@~2l n
22k2

2!ch~vnb!Fn
122wnl n ch~wnb!Qn

1#

3cos~ l nx!2~21!n@~2pn
21k2

2!En
1 ch~pnx!

12snbnPn
1 ch~snx!#%1~2k1

22k2
2!E0

1 cos~k1x!

5k2
2F0

1 cos~k1b!, uxu, l . (4.8)

Now, by substituting in the above three equations the values
all ~capital! constants involved from the formulas of the previo
section, we obtain the first 333 system of integral equations in th
unknowns (g1

s1g2
s), (g2

t2g1
t), gu

1 , that can be written as fol-
lows:

E
2b

b

K11
1 ~h2y!~g1

s1g2
s!~h!dh1E

2b

b

K12
1 ~h2y!~g2

t2g1
t !~h!dh

1E
2 l

l

K13
1 ~j,y!gu

1~j!dj522ik1 , uyu,b, (4.9a)

E
2b

b

K21
1 ~h2y!~g1

s1g2
s!~h!dh1E

2b

b

K22
1 ~h2y!~g2

t2g1
t !~h!dh

1E
2 l

l

K23
1 ~j,y!gu

1~j!dj50, uyu,b, (4.10a)

E
2b

b

K31
1 ~x,h!~g1

s1g2
s!~h!dh1E

2b

b

K32
1 ~x,h!~g2

t2g1
t !~h!dh

1E
2 l

l

K33
1 ~x,j!gu

1~j!dj50, uxu, l , (4.11a)

if we define the kernels

K11
1 ~y!5

a tan~k1l !1 ib

2abk1c1
2 2

k2
2

ac2
2 (

n51

`
qn

Dn
cos~any!

2
k2

2

bc2
2 (

n51

`
pn sh~pnl !sh~snl !

Pn
1 cos~bny!, (4.9b)

K12
1 ~y!5

1

ac2
2 (

n51

`
2an

22k2
222qnr n

Dn
an sin~any!1

1

bc2
2

3(
n51

`
2snpn sh~pnl !ch~snl !2~2bn

22k2
2!ch~pnl !sh~snl !

Pn
1 bn

3sin~bny!, (4.9c)

K13
1 ~x,y!5

2c2
22c1

2

bc1
2 cos~k1l !

cos~k1x!

2
4

b (
n51

`
pn sh~pnl !sh~snl !

Pn
1 ~21!nF 2bn

2sn

sh~snl !
ch~snx!

2
~2bn

22k2
2!~2pn

21k2
2!

2pn sh~pnl !
ch~pnx!G cos~bny!, (4.9d)

K21
1 ~y!5K12

1 ~y!, (4.10b)

K22
1 ~y!5

k2
2

bc2
2 (

n51

`
sn ch~pnl !ch~snl !

Pn
1 cos~bny!

1
k2

2

ac2
2 (

n51

`
r n

Dn
cos~any!, (4.10c)
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K23
1 ~x,y!5

2

lk2
2 (

n51

` F 2l n
22k2

2

sh~vnb!
sh~vny!2

2l n
2

sh~wnb!
sh~wny!G~21!n cos~ l nx!2

sin~k1y!

l sin~k1b!

2
4

bk2
2 (

n51

`
2snpn sh~pnl ! ch~snl !2~2bn

22k2
2!ch~pnl !sh~snl !

Pn
1 F 2bn

2sn

sh~snl !
ch~snx!2

~2bn
22k2

2!~2pn
21k2

2!

2pn sh~pnl !
ch~pnx!G

3~21!nbn sin~bny!, (4.10d)
-

K31
1 ~x,y!52

1

4c2
2 K13

1 ~x,y!, (4.11b)

K32
1 ~x,y!5

1

bc2
2 (

n51

`
~21!n

Pn
1 @~2bn

22k2
2!ch~pnl !ch~snx!

2~2pn
21k2

2!ch~snl !ch~pnx!#snbn sin~bny!,

(4.11c)

K33
1 ~x,j!5

k2c1

2lc2
cot~k1b!2

~2c2
22c1

2!2k1

bc1
2c2

2 sin~2k1l !
cos@k1~x2j!#

1
1

lk2
2 (

n51

` F4l n
2wn cth~wnb!

2
~2l n

22k2
2!2

vn
cth~vnb!Gcos@ l n~x2j!#

1
2

bk2
2 (

n51

`
1

Pn
1 F 2bn

2sn

sh~snl !
ch~snj!

2
~2bn

22k2
2!~2pn

21k2
2!

2pn sh~pnl !
ch~pnj!G

3@4bn
2pnsn sh~pnl !ch~snx!

2~2bn
22k2

2!~2pn
21k2

2!sh~snl !ch~pnx!#, (4.11d)

and recall the evenness or oddness properties of functionsg.
Parallelly, by taking the summation of~4.1! and the difference

of ~4.2!, we get, respectively,

ux
right~ l ,y!1ux

left~2 l ,y!52ux2
cent~ l ,y!, (4.12)

uy
right~ l ,y!2uy

left~2 l ,y!52uy2
cent~ l ,y!, (4.13)

which, together with Eq.~4.3!2 , lead us to the following three
equations:

(
n51

`

$2@pn ch~pnl !En
21bn ch~snl !Pn

2#cos~bny!2@qn~An2Cn!

1an~Bn1Dn!#cos~any!12@Fn
2l n ch~vny!

1Qn
2wn ch~wny!#~21!n%5 ik1~T112R!

22k1 cos~k1l !E0
2 , uyu,b; (4.14)
Journal of Applied Mechanics
(
n51

`

$2@bn sh~pnl !En
21sn sh~snl !Pn

2#sin~bny!1@an~An2Cn!

1r n~Bn1Dn!#sin~any!%50, uyu,b; (4.15)

(
n51

`

$@~2l n
22k2

2!ch~vnb!Fn
212wnl nch~wnb!Qn

2#sin~ l nx!

2~21!n@~2pn
21k2

2!En
2 sh~pnx!12snbnPn

2 sh~snx!#%

1~2k1
22k2

2!E0
2 sin~k1x!50, uxu, l . (4.16)

Substitution of the involved constants~as before! finally gives
rise to the following 333 system of integral equations in the un
knowns (g2

s2g1
s), (g1

t1g2
t), gu

2 :

E
2b

b

K11
2 ~h2y!~g2

s2g1
s!~h!dh1E

2b

b

K12
2 ~h2y!

3(g1
t1g2

t)~h!dh1E
2 l

l

K13
2 ~j,y!gu

2~j!dj52ik1 , uyu,b,

(4.17a)

E
2b

b

K21
2 ~h2y!~g2

s2g1
s!~h!dh1E

2b

b

K22
2 ~h2y!~g1

t1g2
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where we put
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2 (

n51

`
pn ch~pnl !ch~snl !
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2 cos~bny!,

(4.17b)
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Once given a solution to the above systems, the scattered fi
would directly follow from the equations of Sections 2 and 3; no
this in particular for the reflection and transmission coefficie
given by Eqs.~3.6! and ~3.8!, respectively.

In this connection, we conclude the analytical development
applying a standardlow-frequencyapproximation to the integra
systems in order to derive formulas for the quoted coefficient
which the dependence on frequency appears explicitly. To
aim, we can consider only Eqs.~4.9! and~4.17! ~that are related to
the continuity ofux through the borderlinesx56 l ), and in them
we keep as main asymptotic terms the first fraction ofK11

1 for Eq.
~4.9!, and the first fraction ofK11

2 for Eq. ~4.17! ~see Eqs.~4.9b!,
~4.17b!!. Thus, Eqs.~4.9!, ~4.17! attain the following simple
forms:
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from which, by Eqs.~3.6!, ~3.8! the searched~explicit! formulas
for the low-frequency approximation are easily derived:

R5
b22a2

a21b212iab cot~2k1l !
,

T5
2iab

~a21b2!sin~2k1l !12iab cos~2k1l !
. (4.21)

5 Numerical Analysis and Physical Remarks
In order to investigate the wave properties of the structure

concern with respect to the involved geometrical and phys
parameters, we have developed a direct numerical algorithm
solving the two~disjoint! systems of integral Eqs.~4.9!, ~4.10!,
~4.11! and~4.17!, ~4.18!, ~4.19!. This algorithm is based upon th
classicalco-locationtechnique of theBoundary Element Method
~see@21#!. We have focused our attention to formulas~3.6! and
~3.8! for the reflection and transmission coefficients, respectiv
and along all computations we have always verified that thebal-
ance of rates of energies~@19#!

uRu21uTu251 (5.1)

actually holds; that is what is commonly made to control the p
cision of some numerical results~cf. @1–5#!. Note that formulas
~4.21! for the low-frequency case identically satisfy this balanc
The elastic material taken into account is thealuminum: for it,
c156200m/s andc253080m/s.

First of all, we have studied the influence on the reflecti
properties of the physical variables (g1

s6g2
s)(y), (g1

t7g2
t)(y),

gu
6(x), which represent the normal and tangential stresses a

the borderlinesx56 l , and the amplitude of the normal vibratio
along the traction-free surfacey5b. A typical example of the
computations is shown in Fig. 2, where the behavior of the refl
tion coefficient versus the frequency parameter is displayed f
particular~square! geometry (l /a5b/a50.5). Line 1 is related to
the exact solution of the two 333 systems, which amounts to
full consideration of all the quoted variables, while line 2 and li
3 are obtained by assuminggu

6'0 and g1
t ,g2

t ,gu
6'0, respec-

tively. To neglect the normal vibration alongy5b requires of
course not to consider the field equations originating from
traction-free boundary conditions~4.3!, so that the second case
treated by solving only the two 232 systems~4.9!, ~4.10!, and
~4.17!, ~4.18! with gu

650. Analogously, to neglect the tangenti
stresses alongx56 l requires not to consider the field equatio
originating from the continuity conditions~4.2! on the vertical
component of the displacement, so that the third case is treate
solving only the two equations~4.9!, ~4.17! with g1

t ,g2
t ,gu

650.
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Recall that such equations are related to the continuity condit
~4.1! on the horizontal component of the displacement.

We can observe that line 2 is very close to line 1, that mean
weak influence of functionsgu

6 ~i.e., of normal vibration! on the
reflection properties; line 3 is less close to line 1, and this imp
a slightly greater, but not significant, influence of functionsg1

t and
g2

t ~i.e., of tangential stresses!.
Figure 2 also shows an interesting feature of the struct

namely the existence of a~short! range of frequency in which the
reflection coefficient is very small; this means that the conside
structure admits apassing bandof frequencies around the valu
ak1'1.3, very close to the end of the one-mode interval~actually,
ak15ak2c2 /c1.0.5ak2,0.5p.1.5). For comparison, we hav
also reported, as line 4, the graph of the functionuRu versusak1
from Eq. ~4.21!: it is evident that it is a rough precision of th
classical low-frequency approximation even for a small frequen

In Fig. 3 the behavior ofuRu versus the frequency parameter
again displayed from an exact solution of the full 333 systems,
but for different values of the relative openingb/a ( l /a50.5).
Besides the general remark that an arbitrary~periodic! structure of
obstacles cannot provide any wave reflection in the limit of v
ishing frequency, we can first observe that ‘‘closed’’ structu
suddenly attenuate the transmission as soon as frequency b
to increase~see the great initial slopes of lines 1 and 2!, and keep
quasi-locked the waveguide for greater frequencies. Reflec
properties generally increase with increasing frequency and
stacles; however, this figure shows that even for very small op
ings there are still sharp peaks, with a sudden decrease o
reflection, just in the neighborhood of the same critical va
ak1'1.3. The existence of such a passing band seems to be
cluded for lines 4 and 5, depicting larger and larger openi
~however, in the first case, it could be located just out of

Fig. 2 Reflection coefficient zRz versus frequency parameter
ak 1 „c 2 Õc 1Ä0.497, b ÕaÄ l ÕaÄ0.5…. Line 1: exact solution „from
3Ã3 sytems „4.9…, „4.10…, „4.11…, „4.17…, „4.18…, „4.19……; line 2:
approximated solution g u

ÂÉ0 „from 2 Ã2 systems „4.9…, „4.10…,
„4.17…, „4.18……; line 3: approximated solution g u

Á ,g 1,2
t É0„from

Eqs. „4.9…, „4.17……; line 4; low-frequency approximation „from
formula „4.21…….

Fig. 3 Reflection coefficient zRz versus frequency parameter
ak 1 „c 2 Õc 1Ä0.497, l ÕaÄ0.5…. Line 1: b ÕaÄ0.1; line 2: b Õa
Ä0.25; line 3: b ÕaÄ0.5; line 4: b ÕaÄ0.75; line 5: b ÕaÄ0.9.
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one-mode regime; in the second case, due to the smallness o
obstacle, one would actually expect a more smooth behavio
the reflection properties!.

Anyway, we note that, perhaps excluding line 4, the reflect
coefficient tends to the maximum value when the frequency
proaches the end of the one-mode regime even for a limited w
opening; in fact, the limiting caseb/a51 does not imply the
absence of obstacles at all, since in every case there rema
periodic array of slit-type cracks parallel to the direction of t
incident longitudinal wave. The free crack faces cannot sustain
normal stresssy ~which obviously is not trivial!, and therefore the
wavefield is quite different from what it would be in a noncrack
medium.

Figure 4 merely repeats the contents of Fig. 3, but mak
reference to the transmission coefficient; a good satisfaction
Eq. ~5.1! is evident.

The remaining figures also are related to exact solutions of
full systems. Figure 5 shows the behavior of the transmiss
coefficient with respect to the relative openingb/a, for different
values of frequency (l /a50.5). For not high frequencies, on

Fig. 5 Transmission coefficient zTz versus relative opening
b Õa „c 2 Õc 1Ä0.497, l ÕaÄ0.5…. Line 1: ak 1Ä0.25; line 2: ak 1
Ä0.5; line 3: ak 1Ä0.75; line 4: ak 1Ä1.0; line 5: ak 1Ä1.25.

Fig. 6 Reflection coefficient zRz versus relative length of rect-
angles l Õa „c 2 Õc 1Ä0.497, ak 1Ä0.75…. Line 1: b ÕaÄ0.25; line 2:
b ÕaÄ0.5; line 3: b ÕaÄ0.75; line 4: b ÕaÄ0.9.

Fig. 4 Transmission coefficient zTz versus frequency param-
eter ak 1 „c 2 Õc 1Ä0.497, l ÕaÄ0.5…. Line 1: b ÕaÄ0.1; line 2: b Õa
Ä0.25; line 3: b ÕaÄ0.5; line 4: b ÕaÄ0.75; line 5: b ÕaÄ0.9.
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would expect a~monotonic! increase of the transmission prope
ties with the opening increasing, and this is actually reflected
lines 1–4. For higher frequencies, the response of the structur
the incident wave becomes more complex, and this probably
plains the nonmonotonic behavior of line 5.

Finally, Figs. 6 and 7 display the influence on the reflect
coefficient of the relative length of the obstacles. Note that
values of the physical and geometrical parameters involved
such that, in the one-mode regime, the longitudinal wavelen
l152p/k1 keeps always greater than 2l ~of course, it holds
throughoutl2.2a>2b). In Fig. 6 we have four lines for differ-
ent values of the openingb/a and a fixed frequency; unexpec
edly, the behavior is nonmonotonic: in fact, lines 1 and 2, refle
ing a more closed structure, point out a short range of the leng
which the reflection properties suddenly decrease; and lines 3
4 show an opposite property. However, exceeding some cri
values of l /a, the reflection coefficient seems to become ag
smaller for larger openings. In Fig. 7 there are five lines for d
ferent values of the frequency and a fixed opening. Some sim
remarks as above also apply to this figure; it is worth noting t
higher frequencies appear to imply a periodic behavior ofuRu
versusl /a.
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Fig. 7 Reflection coefficient zRz versus relative length of rect-
angles l Õa „c 2 Õc 1Ä0.497, b ÕaÄ0.5…. Line 1: ak 1Ä0.25; line 2:
ak 1Ä0.5; line 3: ak 1Ä0.75; line 4: ak 1Ä1.0; line 5: ak 1Ä1.25.
188 Õ Vol. 69, MARCH 2002
r-
in

e on
ex-

on
he
are
gth

-
ct-
h in
and
ical
in

if-
ilar
at

. of

References
@1# Achenbach, J. D., and Kitahara, M., 1987, ‘‘Harmonic Waves in a Solid W

a Periodic Distribution of Spherical Cavities,’’ J. Acoust. Soc. Am.,81, pp.
595–599.

@2# Angel, Y. C., and Achenbach, J. D., 1987, ‘‘Harmonic Waves in an Elas
Solid Containing a Doubly Periodic Array of Cracks,’’ Wave Motion,9, pp.
377–385.

@3# Achenbach, J. D., and Li, Z. L., 1986, ‘‘Reflection and Transmission of Sca
Waves by a Periodic Array of Screens,’’ Wave Motion,8, pp. 225–234.

@4# Angel, Y. C., and Achenbach, J. D., 1985, ‘‘Reflection and Transmission
Elastic Waves by a Periodic Array of Cracks,’’ ASME J. Appl. Mech.,52, pp.
33–41.

@5# Achenbach, J. D., and Li, Z. L., 1986, ‘‘Propagation of Horizontally Polariz
Transverse Waves in a Solid With a Periodic Distribution of Cracks,’’ Wa
Motion, 8, pp. 371–379.

@6# Malin, V. V., 1963, ‘‘Theory of Strip Grating of Finite Period,’’ Radio Eng
Electron. Phys.,8, pp. 185–193.

@7# Jones, D. S., 1986,Acoustic and Electromagnetic Waves, Clarendon Press,
Oxford.

@8# Collin, R. E., 1991,Field Theory of Guided Waves, 2nd Ed., IEEE Press, New
York.

@9# Lewin, L., 1975,Theory of Waveguides, Butterworth, London.
@10# Twersky, V., 1986, ‘‘On the Scattering of Waves by an Infinite Grating,’’ IEE

Trans. Antennas Propag.,4, pp. 330–345.
@11# Miles, J. W., 1982, ‘‘On Rayleigh Scattering by a Grating,’’ Wave Motion,4,

pp. 285–292.
@12# Scarpetta, E., and Sumbatyan, M. A., 1995, ‘‘Explicit Analytical Results

One-Mode Normal Reflection and Transmission by a Periodic Array
Screens,’’ J. Math. Anal. Appl.,195, pp. 736–749.

@13# Scarpetta, E., and Sumbatyan, M. A., 1996, ‘‘Explicit Analytical Results
One-Mode Oblique Penetration Into a Periodic Array of Screens,’’ IMA
Appl. Math.,56, pp. 109–120.

@14# Scarpetta, E., and Sumbatyan, M. A., 1997, ‘‘On Wave Propagation in Ela
Solids With a Doubly Periodic Array of Cracks,’’ Wave Motion,25, pp. 61–72.

@15# Scarpetta, E., and Sumbatyan, M. A., 2000, ‘‘On the Oblique Wave Penetra
in Elastic Solids With a Doubly Periodic Array of Cracks,’’ Q. Appl. Math.,58,
pp. 239–250.

@16# Scarpetta, E., and Sumbatyan, M. A., ‘‘Wave Penetration Through Elastic
ids With a Periodic Array of Rectangular Flaws,’’ MECCANICA, in press.

@17# Shenderov, Ye. L., 1970, ‘‘Propagation of Sound Through a Screen of A
trary Wave Thickness With Gaps,’’ Sov. Phys. Acoust.,16, No. 1.

@18# Solokin, N. V., and Sumbatyan, M. A., 1994, ‘‘Artificial Layer,’’ Res. Nonde
struct. Eval.,6, pp. 19–34.

@19# Achenbach, J. D., 1973,Wave Propagation in Elastic Solids, North-Holland,
Amsterdam.

@20# Gel’fand, L. M., and Shilov, G. E., 1964,Generalized Functions, Vol. 1, Aca-
demic Press, San Diego.

@21# Banerjee, P. K., and Butterfield, R., 1981,Boundary Element Methods in En
gineering Sciences, McGraw-Hill, New York.
Transactions of the ASME



ngu-
nsions
city
side
arily
C. Y. Wang
Professor,

Departments of Mathematics and
Mechanical Engineering,

Michigan State University,
East Lansing, MI 48824

Mem. ASME

Low Reynolds Number Slip Flow
in a Curved Rectangular Duct
The radially symmetric, steady, slow viscous slip flow through a curved duct of recta
lar cross section is studied. The Stokes equation is solved using eigenfunction expa
and Navier’s slip condition. As slip is increased, the location of the maximum velo
moves from near center to the outer wall. The minimum velocity occurs at the in
corners. It is found that both slip and curvature promote the flow rate but not necess
the mean velocity.@DOI: 10.1115/1.1445142#
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Introduction
The flow in a curved duct is a fundamental fluid dynamic pro

lem studied by numerous authors~e.g.@1#!. Invariably the no-slip
condition between the fluid and the duct wall is assumed. Ho
ever, there are cases where partial slip does occur and the no
condition must be relaxed. The fluoroplastic covering, such
Teflon, resists adhesion. Some surfaces are coated with a
layer of another fluid, be it a lubricant, mucous, or injectant. So
surfaces are rough or porous which are modelled by a sm
surface with some equivalent slip. Lastly, the fluid may be p
ticulate. As a whole it behaves as a continuum, but on a s
boundary slip may occur. Examples include blood flow in mod
ately small vessels, where near the boundary the blood is red
free. Also there is a hydrodynamic slip regime for rarefied gas
when the Knudsen number is nonzero but small~@2#!.

In all of these partial slip cases, the bulk of the fluid may
regarded as Newtonian and the no-slip condition is supplante
the leading order expansion relating slip with the shear stress

u85N
]u8

]n
(1)

whereu8 is the tangential velocity,n is the normal direction to the
surface pointing into the fluid, andN.0 is the slip coefficient.
The condition Eq.~1! has been attributed to Beavers and Jose
but it is more appropriately called the Navier condition sin
Navier@3# had proposed it a century earlier. IfN50, it is the same
as the no-slip condition and ifN is infinite, it is a stress-free
condition.

Although the Navier condition seems to be a simple extens
of the classical no-slip condition, due to its inherent difficul
analytic solutions are rare. The only known fundamental geo
etries which yield analytic partial-slip flow solutions are th
Stokes flow past a sphere~@4#!, parallel flows in a circular tube
parallel plates, annular, and rectangular ducts~@5#!. The literature
to date considered either these geometries or perturbation
these geometries. The present paper studies a new fundam
geometry which describes slip flow in a curved rectangular d
We shall obtain analytic solutions for low Reynolds numbe
which is true for most aforementioned applications. Since
Reynolds number is very small, nonlinear terms such as inertia
centrifugal forces are absent.
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paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
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Solution
Figure 1 shows the cross section of the rectangular duct wh

centerline has a radius of curvature ofR. The duct has dimension
2aR in width and 2bR in height. Fully developed flow is as
sumed, since for low Reynolds numbers the entrance lengt
limited to one width. Thus the present results also apply to a fin
section of a curved duct, connected by straight ducts. The gov
ing equation is the Stokes equation

v rr 1
1

r
v r2

v
r 2 1vzz52

1

r
(2)

wherev is the azimuthal velocity normalized by the pressure g
dient factor (2Rpu /m), (r ,u,z) are cylindrical coordinates nor
malized byR andm is the viscosity. The pressure gradientpu is
constant due to azimuthal symmetry and is negative if
u-direction velocityv is to be positive. For Stokes flow the othe
velocity components and the other momentum equations are i
tically zero. The boundary conditions are the Navier condition E
~1! applied to the four walls.

Due to symmetry aboutz50, the solution of Eq.~2! can be
expressed in terms of the even infinite series

v~r ,z!5(
n51

`

f n~r !cos~bnz! (3)

wherebn is an eigenvalue. The slip boundary condition onz5b is

v~r ,b!52m̄
]v
]z

~r ,b! (4)

where m̄[N/R is a nondimensional parameter representing
importance of slip. Since Eq.~3! is even, the boundary condition
at z52b is automatically satisfied. Equation~4! yields the eigen-
value relation

cosan5lan sinan . (5)

Herean[bbn andl[m̄/b. Equation~5! is solved in the Appen-
dix for givenl. One can show that the eigenfunctions cos(bnz) are
complete and orthogonal in@0,b#. In order to take into accoun
the nonhomogeneous term in Eq.~2!, we can make an even ex
tension of unity in@0,b#, and construct the even Fourier series

15(
n51

`

An cos~bnz! (6)

where the Fourier coefficientsAn can be inverted by multiplying
cos(bmz) and integrating from 0 tob,

An5
2 sinan

an1sinan cosan
. (7)

Equation~2! then reduces to
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E
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The solution is

f n~r !5
An

bn
2r

1C1nK1~bnr !1C2nI 1~bnr ! (9)

whereK and I are modified Bessel functions. The constantsC1n
andC2n are determined from the slip conditions

f n5m̄~ f n82 f n /r ! on r 512a (10)

f n52m̄~ f n82 f n /r ! on r 511a (11)

where (f 82 f /r ) is the appropriate form for the shear stress o
radial surface. With the aid of a computer with symbolic capab
ties we find

C1n52AnFa2122m̄1
2~a221!L1

~11a!2L2
GY L3 (12)

C2n5
2AnL4

~12a2!bn
2L5

(13)

where

L152~a221!F S 12
m̄

a21D I 1
22

bnm̄

2
~ I 0

21I 2
2!G

3$~11a!~a2122m̄ !@2~11a2m̄ !K1
1

2~11a!bnm̄~K0
11K2

1!#1~a21!~11a22m̄ !

3@2~a212m̄ !K1
21~a21!bnm̄~K0

21K2
2!#% (14)

L25@2~12a1m̄ !I 1
21~a21!bnm̄~ I 0

21I 2
2!#@2~11a2m̄ !K1

1

2~11a!bnm̄~K0
11K2

1!#

1@2~11a2m̄ !I 1
11~11a!bnm̄~ I 0

11I 2
1!#

3@2~a212m̄ !K1
21~a21!bnm̄~K0

21K2
2!# (15)

L35~a21!bn
2@2~a212m̄ !K1

21~a21!bnm̄~K0
21K2

2!#
(16)

L45~11a!~a2122m̄ !@2~11a2m̄ !K1
12~11a!bnm̄~K0

1

1K2
1!#1~a21!~11a22m̄ !@~2~a212m̄ !K1

2

1~a21!bnm̄~K0
21K2

2!# (17)

L55@2~12a1m̄ !I 1
21~a21!bnm̄~ I 0

21I 2
2!#@2~11a2m̄ !K1

1

2~11a!bnm̄~K0
11K2

1!#1@2~11a2m̄ !I 1
1

1~11a!bnm̄~ I 0
11I 2

1!#@2~a212m̄ !K1
2

1~a21!bnm̄~K0
21K2

2!# (18)

Fig. 1 Cross section of the curved rectangular duct
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and the plus and minus superscripts represent evaluation atbn(1
1a) and bn(12a), respectively. We find the series converg
very fast. Four-digit accuracy in velocity is guaranteed when
first five terms in the series are retained.

Typical equivelocity lines~only the top half is shown! are
shown in Fig. 2 for the square duct (a5b50.25). In Fig. 2~a!,
there is no slip on the boundary (m̄50). Notice the location of the
maximum velocity is slightly to the left of the center of the cro
section. When there is slip, the velocity on the boundary is
longer zero, but local minima occur at the corners~Fig. 2~b!!. The
maximum velocity also moves toward the outside boundary~Fig.
2~c!!. For high slip coefficients the equivelocity lines tend to
parallel to the side walls~Fig 2~d!!.

After the velocity is obtained, the flow rate, represented by
mean velocity, is given by

Fig. 2 Equivelocity lines for the aÄbÄ0.5 duct. „a… m̄Ä0, „b…
m̄Ä0.5, „c… m̄Ä1, „d… m̄Ä5. Only the top halves are shown. Val-
ues are for v „r ,z….
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Fig. 3 Velocity distribution for azimuthal flow through an annulus
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2ab E12a

11aE
0
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vdzdr

5
1

2ab (
n51

` H An

bn
lnS 11a

12aD
2C1n~K0

12K0
2!1C2n~ I 0

12I 0
2!J sinan

bn
2 . (19)

Flow Through a Curved Channel
We have solved the slow slip flow through a curved rectangu

duct. The solutions, however, do not apply to the case where
height b is infinite, i.e., the curved channel. This special case
considered here. The results are also exact solutions of the Na
Stokes since the Reynolds numbers need not be small. Bec
the velocity is independent ofz, the governing equation is

v9~r !1
1

r
v82

v
r 2 52

1

r
. (20)

Using the slip boundary conditions the solution is

v~r !52
1

2
r ln r 1C1r 1

C2

r
(21)

where

C15
1
8 @2m̄~12a214am̄ !2~12a!3~11a22m̄ !ln~12a!

1~11a!3~12a12m̄ !ln~11a!#/~a2a31m̄13a2m̄ !

(22)

C252
1

8
~12a2!2F2m̄1~12a2!lnS 11a

12aD GY
~a2a31m̄13a2m̄ !. (23)

Some velocity profiles fora50.25 are shown in Fig. 3. We not
that for large slip or largem̄, the coefficientC1 dominates and the
velocity is approximately linear as reflected in Fig. 3.

v'
a

113a2 m̄r (24)

The mean velocity is
anics
lar
the
is

vier-
ause

v̄5
1

8a F ~12a!2 ln~12a!2~11a!2 ln~11a!12~114C1!a

14C2 lnS 11a

12aD G . (25)

Results and Discussion
The flow conductance is best represented by the normal

mean velocity instead of the friction factor–Reynolds numb
product which does not exist for Stokes flow. Figure 4~a! shows
the mean velocity for a square (b5a) curved duct. Since lengths
are normalized with respect to radius of curvatureR, the larger the
value of a the larger the normalized curvature of the turn.
general the mean velocity rises witha and with the slip factorm̄,
except for large curvature and large constant slip factors, prob
due to the uneveness of the wall shear.~The wall shear, being
proportional to the slip velocity, can be obtained from the w
velocities in Fig. 2~b–d!.! Even if the mean velocity decrease
slightly it is more than off set by the increase in area such that
total flow still increases witha. The classical solution for the flow
in a straight rectangular duct with no slip (m̄50) is

v̄05c1a2 (26)

wherec150.14058 for the square duct~see, e.g.,@6#!. This solu-
tion compare very well with our curved duct solution, showing t
curvature effects are minimal when there is no slip. Also shown
Fig. 4~a! are the results of Ebert and Sparrow@5# who considered
the straight rectangular duct with slip. Their semi-empirical fo
mula in our variables is

v̄5S 11
c2m̄

2b D v̄0 (27)

where c2 is a coefficient depending on the aspect ratio. Fo
square,c257.567. We see from Fig. 4~a! that Eq. ~27! is valid
only for very smalla values, showing curvature effects are impo
tant if slip is not close to zero. Figure 4~b! shows the results for
aspect ratio of 0.5~c150.05717,c256.306!. In the no slip case
the straight duct has slightly smaller flow than the curved du
The results for aspect ratio of 2 are shown in Fig. 4~c! ~c1
50.2287,c2512.612!. In order to compare the flow for the sam
cross section, the value ofa is doubled compared to that of Fig
4~b!. We note that if slip is not zero, the flow in a duct curvin
about the long side~inset of Fig. 4~c!! is always larger than tha
curving about the short side~inset of Fig. 4~b!!. Figure 5 shows
MARCH 2002, Vol. 69 Õ 191
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the large aspect ratio cases. The infinite aspect ratio results~flow
in an annulus! are given by Eq.~25!. Figure 6 shows the approac
of the finite aspect ratio solution Eq.~19! to the infinite aspect
ratio solution for increasingb. It is seen that the effect of slip is to
delay this approach to higher aspect ratios. Although the cu
are for a50.5 the results for other values ofa show a similar
behavior. In the case of large slip~infinite N or m̄! the boundaries
are stress free. From force balance the fluid can flow withou
pressure gradient. The azimuthal velocity, satisfying all
192 Õ Vol. 69, MARCH 2002
ves

t a
he

boundary conditions, can be shown to be proportional to the
dius r, i.e., a rigid rotation. This is also reflected in Eq.~24! for
large m̄.

Of interest is the location of the velocity maximum which w
noted~Fig. 2~a!! is off centered towards the inner wall. In order
show that this phenomenon is a property of neither Stokes fl
nor slip flow, consider the infinite aspect ratio solution which
also an exact solution of the Navier-Stokes equations~valid for all
Reynolds numbers!. Using Eq.~21! and no slip (m̄50), we find
Fig. 4 Normalized mean velocity as a function of a for various constant slip
factor m̄. Unless otherwise noted, dashed lines are from †5‡ or Eq. „27…. „a… b
Äa, „b… bÄ0.5a, „c… bÄ2a.
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Fig. 5 Normalized mean velocity for high aspect-ratio ducts. Continuous lines
are when bÄ5a. Dashed lines are from Eq. „25… bÄ`.

Fig. 4 „continued …
m

h
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axi-

o-
nd-
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m

the velocity maximum is always closer to the inner wall, esp
cially when the normalized curvature is large~r 52/e50.7358
,1 for a51!. When slip is increased, the velocity maximu
moves towards the outer wall~Figs. 2~b!, 2~c!, 2~d!, and 3!. In
general, the flow in a curved duct is governed by both the cur
ture and the Reynolds number~or Dean number!. The reason cur-
rent literature failed to report a velocity maximum closer to t
Journal of Applied Mechanics
e-

va-

e

inner wall is due to the fact that small curvature and large De
numbers were assumed, the latter is known to promote a m
mum velocity towards the outer wall~@1#!.

Analytical slip flow solutions are even more scarcer than n
slip solutions due to the inseparability of the Robbins type bou
ary conditions in most coordinate systems. We find slip flow o
curved tube dramatically changes the velocity distribution, fro
MARCH 2002, Vol. 69 Õ 193
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Fig. 6 The mean velocity as a function of height b for aÄ0.5 and given slip
factor m̄. Dashed lines are the bÄ` results from Eq. „25….

Table 1 Values of an for various l

l 0.2 0.5 1 2

(n) Num. Eq.~28! Num. Eq.~28! Num. Eq.~28! Num. Eq.~28!

1 1.3138 1.0769 0.8603 0.6533
2 4.0336 2.5830 3.6436 3.5632 3.4256 3.4277 3.2923 3.29
3 6.9096 6.8102 6.5783 6.5746 6.4373 6.4383 6.3616 6.36
4 9.8928 9.8757 9.6296 9.6290 9.5293 9.5297
5 12.935 12.931 12.722 12.723 12.645 12.645
6 16.011 16.010
i

i

t

u.

s,’’

d.

n-
concentric equivelocity lines to parallel equivelocity lines. Bo
slip and curvature enhances the flow rate, although nonlinear

Depending on the application, other factors such as twist, n
zero Reynolds numbers, non-Newtonian effects, compressib
etc., may be included. The present paper then serves as a bas
these more involved situations.
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Appendix
The eigenvalues of Eq.~5! can be evaluated numerically, bu

one can obtain an asymptotic formula for largen. Such a formula
greatly facilitates the velocity evaluations. Using a perturbat
about (n21)p, we find

an'~n21!p1
1

l~n21!p
2

l1~1/3!

l3~n21!3p3 1O~~n21!25!.

(28)
194 Õ Vol. 69, MARCH 2002
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If l50 the exact solution isan5(n20.5)p. Equation ~28! is
compared with the exact numerical values in Table 1.

We see that Eq.~28! is quite accurate especially for largen and
large l. In fact for l>1 the asymptotic formula gives five-digi
accuracy for alln>2.
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Some Properties ofJ-Integral in Plane
Elasticity

Y. Z. Chen
Division of Engineering Mechanics, Jiangsu University,
Zhenjiang, Jiangsu 212013, P. R. China

K. Y. Lee
Department of Mechanical Engineering, Yonsei
University, Seoul 120-749, South Korea

Some properties of the J-integral in plane elasticity are analyz
An infinite plate with any number of inclusions, cracks, and a
loading conditions is considered. In addition to the physical fie
a derivative field is defined and introduced. Using the Betti’s
ciprocal theorem for the physical and derivative fields, two n
path-independent D1 and D2 are obtained. It is found that the
values of Jk(k51,2) on a large circle are equal to the values
Dk(k51,2) on the same circle. Using this property and the co
plex variable function method, the values of Jk(k51,2) on a large
circle is obtained. It is proved that the vector Jk(k51,2) is a
gradient of a scalar function P(x,y).@DOI: 10.1115/1.1432663#

1 Introduction
The well-knownJ-integral of elastic fracture mechanics wa

introduced by several researchers@1–3#. The integral was related
to potential energy-release rate associated with crack exten
Budiansky and Rice@4# showed that some path independent in
grals discovered by Knowles and Sternberg@5# were related to
energy-release rates associated with cavity or crack rotation
expansion. In some particular cases, theJ-integral can be inte-
grated in a closed form@3#. The relations between the path
independent integrals and the stress intensity factors were
lyzed @6–9#. Chen and Hasebe@10# investigated the consistenc
check of theJ-integral in the multiple crack problems. Recent
the vanishing condition of theJ1 value on a large circle was
addressed without a rigorous proof@11#.

In this paper, some properties of theJ-integral in plane elastic-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2001; final revision, Sep. 6, 2001. Associate Editor: J. R. Barber.
Copyright © 2Journal of Applied Mechanics
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ity are analyzed. An infinite plate with any number of inclusion
cracks, and any loading conditions is considered~Fig. 1!. A de-
rivative field is defined and introduced. Using the Betti’s recipr
cal theorem for the physical and the derivative fields we introd
two path-independent integralsD1 and D2. It is proved that the
Dk(k51,2) values are equal to theJk(k51,2) values on the large
circle. Using the complex variable method, theJk(k51,2) values
on the large circle are obtainable. It is found that theJ1 and J2
becomes a vector, and it may be expressed in a gradient of a s
function P(x,y).

2 Jk Integrals and the Derivative Stress Field
In the literature, theJk(k51,2) integrals are defined by

J1~L !5E
~xo ,yo!,~L !

~x,y! S Wn12
]ui

]x
s i j nj Dds (1)

J2~L !5E
~xo ,yo!,~L !

~x,y! S Wn22
]ui

]y
s i j nj Dds (2)

whereW denotes the strain energy density,ui the displacements
s i j the displacements, andnj the direction cosines. In plane elas
ticity, the strain energy density can be expressed as

W5ui , js i j /2 (3)

whereui , j5]ui /]xj . In Eqs.~1! and ~2!, the path ‘‘L’’ is gener-
ally defined as a path with the starting point (xo ,yo) and the end
point (x,y) ~Fig. 1!.

Meantime, the relevant integrals are defined on a closed p
‘‘CH’’ ~Fig. 1!

J1~CH!5 R
~CH!

S Wn12
]ui

]x
s i j nj Dds (4)

J2~CH!5 R
~CH!

S Wn22
]ui

]y
s i j nj Dds. (5)

In Eqs.~4! and~5!, if there are some holes, cracks, or inclusions
a closed contour, the contour is defined as the type ‘‘CH’’~Fig. 1!.

In the following analysis, two stress fields are introduced. T
first field is the physical field, which is defined from the geome
and the loading condition shown in Fig. 1, and it is called t
a-field hereafter. Clearly, for thea-field we can write

ui ~a!5ui , s i j ~a!5s i j . (6)

The second field is defined as a derivative field. It is called
b-field and may be written as

4,
002 by ASME MARCH 2002, Vol. 69 Õ 195



Fig. 1 An infinite plate containing cracks, holes, and inclusions
.

ui ~b!5
]ui

]x
, s i j ~b!5

]s i j

]x
. (7)

It is easy to prove that the componentsui (b) ands i j (b) satisfy all
the governing equations of elasticity.

Similar to Eq.~1!, we can define

D1~L !5E
~xoyo!,~L !

~x,y! 1

2
~ui ~a!s i j ~b!2ui ~b!s i j ~a!!njds

5E
~xo ,yo!,~L !

~x,y! 1

2 S ui

]s i j

]x
2

]ui

]x
s i j Dnjds. (8)

Clearly, from the Betti’s reciprocal theorem in elasticityD1(L) is
also a path-independent integral. In addition, similar to Eq.~4!,
the following integral is defined:

D1~CH!5 R
~CH!

1

2 S ui

]s i j

]x
2

]ui

]x
s i j Dnjds. (9)

A relation betweenJ1 andD1 has been found, and it reads

J1~CH!5D1~CH!. (10)

In fact, instead of Eq.~10!, it is equivalent to prove the following
equality:

R
~CH!

S ui

]s i j

]x
1

]ui

]x
s i j Dnjds52 R

~CH!

Wdy. (11)

Clearly, for the first term on the left-hand side of Eq.~11!, we
have
196 Õ Vol. 69, MARCH 2002
d15 R
~CH!

ui

]s i j

]x
njds

5 R
~CH!

uS ]sx

]x
dy2

]sxy

]x
dxD1 R

~CH!
vS ]sxy

]x
dy2

]sy

]x
dxD

5 R
~CH!

uS 2
]sxy

]y
dy2

]sxy

]x
dxD

1 R
~CH!

vS 2
]sy

]y
dy2

]sy

]x
dxD

5 R
~CH!

~2udsxy2vdsy!

5 R
~CH!

sxyS ]u

]x
dx1

]u

]y
dyD1syS ]v

]x
dx1

]v
]y

dyD . (12)

In addition, for the second term on the left-hand side of Eq.~11!,
we have

d25 R
~CH!

]ui

]x
s i j njds

5 R
~CH!

]u

]x
~sxdy2sxydx!1

]v
]x

~sxydy2sydx!. (13)

Finally, from Eqs.~3!, ~12!, and~13!, the equality shown by Eq
Transactions of the ASME
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~11! is proved. Thus, the equality Eq.~10! is also proved. The
identity shown by Eq.~10! is implicit in Eshelby’s work@12#.

Alternatively, the second stress field, theb-field and may be
defined as

ui ~b!5
]ui

]y
, s i j ~b!5

]s i j

]y
. (14)

It is easy to prove that the componentsui (b) ands i j (b) satisfy all
the governing equations of elasticity. Similar to the previous ca
we can define

D2~L !5E
~xoyo!,~L !

~x,y! 1

2
~ui ~a!s i j ~b!2ui ~b!s i j ~a!!njds

5E
~xo ,yo!,~L !

~x,y! 1

2 S ui

]s i j

]y
2

]ui

]y
s i j Dnjds. (15)

D2~CH!5 R
~CH!

1

2 S ui

]s i j

]y
2

]ui

]y
s i j Dnjds. (16)

where D2(L) is also a path independent integral. Similarly, w
can prove

J2~CH!5D2~CH! (17)

3 Jk Integrals on a Large Circle
In the following analysis ‘‘CR’’ denotes a sufficient large circ

in which all the cracks and inclusions are enclosed~Fig. 1!. Since
the equality Eq.~10! is proved, and the closed path ‘‘CR’’ is
particular type of ‘‘CH’’, thus, we have

J1~CR!5D1~CR! (18)

where

J1~CR!5 R
~CH!

S Wn12
]ui

]x
s i j nj Dds (19)

D1~CR!5 R
~CR!

1

2 S ui

]s i j

]x
2

]ui

]x
s i j Dnjds. (20)

Equation ~18! shows that instead of evaluating the integ
J1~CR! we can evaluate its equivalent valueD1~CR!.

The following analysis depends on the complex variable fu
tion method in plane elasticity@13#. In the method, the stresse
(sx ,sy ,sxy), the resultant forces (X,Y) and the displacement
(u,v) are expressed in terms of two complex potentialsf(z) and
c(z) such that

sx1sy54Ref8~z!

sy2sx12isxy52@ z̄f9~z!1c8~z!# (21)

f 52Y1 iX5f~z!1zf8~z!1c~z! (22)

2G~u1 iv !5kf~z!2zf8~z!2c~z! (23)

whereG is the shear modulus of elasticity,k5(32v)/(11v) is
for the plane stress problem,k53 – 4v is for the plane-strain
problem, andv is the Poisson’s ratio. The following equations
the polar coordinate are also introduced@13#:

s r1 is ru5f8~z!1f8~z!2
R2

z2 @zf9~z!1c8~z!# (24)

2G~ur2 iuu!5
z

R
@kf~z!2 z̄f8~z!2c~z!#. (25)

For the physical field, the complex potentialsf(z) and c(z) in
the remote place can be expressed in the general form@13#
Journal of Applied Mechanics
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f~z!5A1z1A2 log z1(
k51

`
ak

zk (26a)

c~z!5B1z1B2 log z1(
k51

`
bk

zk (26b)

where

A15
sx

`1sy
`

4
, B15

sy
`2sx

`

2
1 isxy

` (27a)

A252
~Fx1 iF y!

2p~k11!
, B252kA25

k~Fx2 iF y!

2p~k11!
. (27b)

In Eq. ~27b!, Fx and Fy are the resultant forces applied on th
finite region of the infinite plate. Also, the coefficientak and bk
(k51,2, . . . ) in Eq. ~26! will be determined from a concrete
solution.

For thea-field, we simply write the complex potentials in th
form

f~a!~z!5f~z!, c~a!~z!5c~z!. (28)

If the b-field is defined by Eq.~7!, we obtain the following:

~sx1sy!~b!5
]

]x
~sx1sy!54Ref9~z!,

~sy2sx12isxy!~b!5
]

]x
~sy2sx12isxy!

52@ z̄f-~z!1f9~z!1c9~z!# (29)

2G~u1 iv !~b!52G
]

]x
~u1 iv !

5kf8~z!2zf9~z!2f8~z!2c8~z!. (30)

Comparing Eqs.~21! and ~23! with Eqs.~29! and ~30!, the com-
plex potentials for theb-field are obtained,

f~b!~z!5f8~z!5A11
A2

z
2(

k51

`
kak

zk11 (31a)

c~b!~z!5f8~z!1c8~z!5A11B11
A21B2

z
2(

k51

`
k~ak1bk!

zk11 .

(31b)

Obviously, it is natural to rewrite theD1~CR! integral in the
form

D1~CR!5 R
~CR!

1

2 S ui

]s i j

]x
2

]ui

]x
s i j Dnjds

5Re R
~CR!

1

2
~~ur2 iuu!~a!~s r1 is ru!~b!

2~ur2 iuu!~b!~s r1 is ru!~a!!ds (32)

where the terms (ur2 iuu)(a), (s r1 is ru)(b), (ur2 iuu)(b) and
(s r1 is ru)(a) can be evaluated by using Eqs.~24! and ~25!.

It is easy to see that there are some relations on the large c
‘‘CR’’

z5R exp~ iu!, z̄5R2/z, dz5 izdu, ds5Rdu52 i
Rdz

z

~for z on CR). (33)

The substitutions shown by Eq.~33! reveals that the integral in
volved in right side of Eq.~32! ~after ‘‘Re’’ ! may be changed into
an integral of complex variable function of the formr ~CR!f (z)dz.
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By using the residue theorem in complex variable analysis for
integralr ~CR!f (z)dz, from Eq. ~32! the final result is obtainable:

J1~CR!5D1~CR!

5
1

8G
@~k21!~sx

`1sy
`!Fx22~sy

`2sx
`!Fx14sxy

` Fy#.

(34)

From Eq.~34! we can see the following points:
~a! The J1(CR)(5D1(CR)) value is not equal to zero in

general.
~b! The J1(CR)(5D1(CR)) value solely depends on the r

mote stressessx
` , sy

` , andsxy
` and the resultant forcesFx and

Fy . It does not depend on the coefficientsak andbk(k51,2,...).
Previously, the vanishing condition ofJ1~CR! was studied without
a rigorous proof@11#.

Similarly, if the b-field is defined by Eq.~14!, the relevant
complex potentials take the form

f~b!~z!5 if8~z!5 i FA11
A2

z
2(

k51

`
kak

zk11G (35a)

c~b!~z!5 i @2f8~z!1c8~z!#

5 i FB12A11
B22A2

z
2(

k51

`
k~bk2ak!

zk11 G . (35b)

As before, similar derivation will yield

J2~CR!5D2~CR!

5
1

8G
@~k21!~sx

`1sy
`!Fy12~sy

`2sx
`!Fy14sxy

` Fx#

(36)

where

J2~CR!5 R
~CR!

S Wn22
]ui

]y
s i j nj Dds (37)

D2~CR!5 R
~CR!

1

2 S ui

]s i j

]y
2

]ui

]y
s i j Dnjds. (38)

4 Scalar Field Defined From theJk Integrals
It is easy to see that for a given point in the infinite plate theJ1

or J2 generally takes a multiply value. Clearly, if one takes a
from all cracks or inclusions, a (J1 ,J2) field with single value is
obtained. From the definition shown by Eqs.~1! and ~2!, we find
the following:

]J1

]y
5

]J2

]x
5

1

2 S ]u

]y
sxy1

]v
]y

sy2
]u

]x
sx2

]v
]x

sxyD . (39)

Therefore, we can define a function

P~x,y!5E
~xo ,yo!

~x,y!

J1dx1J2dy. (40)

Alternatively speaking, theJ1 andJ2 integrals become the grad
ent of a scalar function

J15
]P

]x
, J25

]P

]y
. (41)

These relations reveal thatJ1 and J2 become vectors, and a
invariant can be defined:

Jin5AJ1
21J2

2. (42)
198 Õ Vol. 69, MARCH 2002 Copyright © 2
the

-

ut

-

It can also be proved that theD1(L) and D2(L) integrals de-
fined by Eqs.~8! and ~15! also become vectors.

5 Conclusion
The introduction of the derivative field plays an important ro

in the present study. It is worthy to explain why this field
introduced. In fact, the second term in theJ1 integral is composed
of two factors ]ui /]x and s i j njds. Physically, the terms
(]ui /]x)(s i j njds) represent the work along a segmentds, which
is done by the traction of the physical field and the displacem
of the derivative field. This situation helps people to get an idea
use the Betti’s reciprocal theorem between the physical field
the derivative field. Therefore, a path-independent integralD1(L)
is obtainable.

In addition, after equalityJ1(CH)5D1(CH), or J1(CR)
5D1(CR) is proved, and the realizationz̄5R2/z on the large
circle is used, the final result ofJ1(CR) is obtained .
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There are many statistical mechanical models of long-chain m
els, two of which are the freely jointed chain model and the wo
like chain model. A continuum constitutive law for hyperelas
orthotropic materials has recently been developed using the fr
jointed chain model as its basis. In this note, the continuum str
energy function is recast in general terms allowing for the inc
poration of an arbitrary macromolecular constitutive model.
particular, the orthotropic constitutive model is recast using t
wormlike chain model in place of the freely jointed chain mo
and the effects of this alternation are examined.
@DOI: 10.1115/1.1432664#

1 Introduction
A micromechanical model for orthotropic hyperelastic materi

has recently been developed from an orthotropic unit cell w
eight constituent chains@1#. This model can be applied to collag
enous soft tissue such as skin and hear tissue, in which the
ence of an anisotropic collagen network within the tissue do
nates the elastic response of the material and results in nonl
orthotropic constitutive behavior. In this model, the response o
single chain in the representative unit cell is calculated by con
ering the chain to be freely jointed; that is, each chain is co
posed of a numberN of rigid links each of lengthl. The strain
energyw(r) for such a chain is given by

w~r!5kQNS r

N
b1 ln

b

sinhb D (1)

wherer is the length of the chain normalized by the rigid lin
lengthl; k is Boltzmann’s constant;Q is absolute temperature; an
b5L21(r/N) whereL(x)5cothx21/x is the Langevin function.
The continuum strain energy functionW developed from consid-
ering an orthotropic unit cell with eight such chains forming
junction at the center of the unit cell and terminating at its corn
is given by

W5W01
nkQ

4 H N

2 (
i 51

4 Fr~ i !

N
b~ i !1 ln

b~ i !

sinhb~ i !

2
bp

AN
ln~la

a2
lb

b2
lc

c2
!J 1B@cosh~J21!21# (2)

whereW0 is a constant related to the strain energy of the un
formed continuum;n is a free parameter that reflects the unit c
~or chain! density; the superscript (i ) represents theith chain in
the unit cell; bp5L21(P/N) where P is the initial normalized
length of a chain;la ,lb , andlc are stretches anda, b, andc are
the normalized unit cell dimensions along the three orthonor
material axesa, b, andc, respectively;B is a free parameter tha
governs the bulk compressibility of the material; andJ5detF is
the volume change accompanying deformation normalized by
undeformed volume whereF is the deformation gradient. Only
four chains act independently because of symmetry.

Statistical representations of macromolecules other than
freely jointed chain~FJC! model can be considered within th
framework of a unit cell to develop a continuum constitutive la
such as a freely jointed chain model with steric constraints,
wormlike chain~WLC! model, or the extensible wormlike chai
model. Each of these models prescribes a unique strain en
function for the chain and will result in a unique continuum stra
energy function. To incorporate other chain models, the ortho
pic constitutive model given in Eq.~2! will be recast in terms of
an arbitrary chain strain energy functionw(r). Using this general

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May
2001; final revision, Oct. 5, 2001. Associate Editor: L. T. Wheeler.
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formulation, an orthotropic continuum constitutive law based
the WLC model will be developed and compared to the previou
developed model based on the FJC model.

2 Constitutive Model Development
Let w(r) be the strain energy function of a single chain whe

r is the length of the chain normalized by a length scale origin
ing from the statistical model. Following the approach in Bisch
et al. @1#, the strain energy function for an orthotropic unit ce
with eight of these chains is

w5
n

4 H F(
i 51

4

w~r~ i !!G2
1

P S dw~r!

dr D
r5P

ln~la
a2

lb
b2

lc
c2

!J
1B@cosh~J21!21#. (3)

The componentsSjk of the second Piola-Kirchhoff stress tens
calculated fromW are

Sjk5
n

4 H F(
i 51

4
Pj

~ i !Pk
~ i !

r~ i ! S dw~r!

dr D
r5r~ i !

G2
1

P S dw~r!

dr D
r5P

S a2ajak

la
2

1
b2bjbk

lb
2 1

c2cjck

lc
2 D J 1B sinh~J21!

]J

]Ejk
(4)

wherePj
( i ) are components of the undeformed chain vector for

ith chain andEjk are components of the Lagragian strain tens
When the freely jointed chain model is used, together with
assumption that the undeformed~reference! length of each chain
is its rms length such that P5AN, then dw(r)/dr
5kQL21(r/N) and the stress-strain relationship given in@1# is
recovered.

The WLC model considers a macromolecule to be a flexible
characterized by a total contour lengthL and a persistence lengt
A ~the characteristic distance over which significant deviations
the tangent vector of the chain arise!. An interpolation formula for
the force-stretch response of a wormlike chain is

f A

kQ
5

r

L
1

1

4~12r /L !22
1

4
(5)

where f is the applied force andr is the deformed length of the
chain@2#. Using the persistence length as a normalized factor,
strain energy for a wormlike chain can be found by integrating E
~5!, giving

w~r!5kQS r2

2L
1

L

4

1

12r/L
2

r

4D ; r<L (6)

wherer5r /A andL5L/A. ~Note that a singularity exists in Eq
~6! at the fully extended lengthr5L, beyond which (r.L) a
finite value ofw(r) is returned from the strain energy functio
even though these deformed lengths are not physically per
sible.! The undeformed length of a chain is typically given as
end-to-end root-mean-squared distanceR5A2AL @2#, and thus
the normalized undeformed length used here isP5A2L. From
this relation, whenL<2 then P>L, meaning the undeformed
length of each chain is greater thanb its contour length. Cle
that is not physical andL must therefore be greater than two whe
using this model. Using the undeformed lengthP andw(r) in Eq.
~6!, the strain energy function and the associated stressed fo
orthotropic continuum model using the WLC approximation c
be determined from Eqs.~3! and ~4!.

3 Simulations
To examine the differences associated with using the W

model in place of the FJC model within the framework of t
orthotropic continuum model, simulations of uniaxial tension ha
been performed. For simplicity, the material axes are aligned w
the principal stretches, such thata5@1,0,0#, b5@0,1,0#, and c
,
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FJC

re-
5@0,0,1#. By virtue of this alignment no shear stresses are g
erated and the stress-stretch relations in the three principal d
tions in terms of the chain strain energyw(r) are

T115
na2

4J Fl1
2

r

dw~r!

dr
2

1

P S dw~r!

dr D
r5P

G1B sinh~J21!

T225
nb2

4J Fl2
2

r

dw~r!

dr
2

1

P S dw~r!

dr D
r5P

G1B sinh~J21!

T335
nc2

4J Fl3
2

r

dw~r!

dr
2

1

P S dw~r!

dr D
r5P

G1B sinh~J21! (7)

whereTii are the principal Cauchy stresses,l i are the principal
stretches, and the deformed chain length isr
5Aa2l1

21b2l2
21c2l3

2/2. To simulate uniaxial tension along th
xi-axis, T225T3350 and the second two equations in Eq.~7 can
be solved for the transverse stretchesl2 andl3 given an applied
stretchl1. Note thata andb are free parameters, but after spe
fying these parameters and the chain parameters~n andN for the
FJC model,n andL for the WLC model!, thenc is fixed by

c5A4N2a22b2 (8)

if the FJC model is used or by

c5A8L2a22b2 (9)

if the WLC model is used.
Figure 1 shows results of simulations using the FJC or W

model for uniaxial tension along each of the three material a
~denotedx1 , x2 , x3 in the figure!. For the FJC simulations
a54, b53, c52, N57.25, andn51•1022/m3. WLC simulation
parameters were selected to match the results from the c
sponding FJC simulation while preserving the relative values
the aspect ratios; the resulting parameters area59, b56.75,
c54.5, L518.35, andn50.7•1022/m3. For all simulationsB50.
MPa. Though not shown here, at low stretches~,1.5! or stretches
well into the locking regime~corresponding to stresses above
kPa!, differences between simulations using the FJC model ve
as the WLC model become significant, indicating that the ini
modulus and final locking stretch predicting by the two mod
are different.

To examine the ability of the continuum model using the WL
model to capture the initial modulus and locking stretch of sim
lations using the FJC model, a series of simulations was

Fig. 1 Simulations of uniaxial tension along each of the three
material axes „x 1 ,x 2 ,x 3… using the freely jointed chain „FJC… or
the wormlike chain „WLC… model in the orthotropic constitutive
model. Parameters used for the FJC simulations are aÄ4, bÄ3,
cÄ2, NÄ7.25, nÄ1"1022Õm3, and BÄ0.1 MPa. Parameters used
for the WLC simulations are aÄ9, bÄ6.75, cÄ4.5, LÄ18.35, n
Ä0.7Ã1022Õm3, and BÄ0.1 MPa.
200 Õ Vol. 69, MARCH 2002
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formed in which the locking stretchlL was set a priori to be 1.9
1.7, and 1.5 with aspect ratios ofa52.5 andb51 when possible.
Results are shown in Fig. 2; parameters used in these simula
are given in Table 1. For uniaxial deformation along t
x1-axis,the WLC model predicts locking to occur atlL52L/a,
thus settingL as a function ofLL and a. However, whenLL

51.5 and whena52.5 this relations givesL,2 in violation of the
physical basis of the WLC model. Thus, for this locking stretcha
was calculated withL52.125. The FJC model predicts lockin
under uniaxial tension along thex1-axis to occur atLL52N/a.
The parameters for the curves using the FJC model were d
mined by matching the initial modulus and locking stretch of t
corresponding WLC simulation. As seen in Fig. 2, the initial b
havior ~inset! and the locking stretch of the two models a
matched well, but the curvatures of the constitutive response
the intermediate regime deviate significantly from each other.

Figures 1 and 2 suggest that differences in the response o
continuum constitutive model when different molecular mod
are used~in this case the FJC model versus the WLC model! can
be attributed primarily to the differences between the molecu
models themselves. It is known that the locking behavior p
dicted by the FJC model for a single chain occurs more sha
than that predicted by the WLC model@2# and this is reflected in
the continuum responses examined here~Fig. 2!. However, the
orthotropy of the material response predicted by the general c
tinuum model in Eq.~3! relates directly to the orthotropic aspe
ratios of the unit cell itself and thus the orthotropy is not affect
by the selection of a particular chain constitutive model~Fig. 1!.
Additionally, a change in the aspect ratio of the unit cell affe
the predicted continuum response in a consistent fashion reg
less of the particular molecular model~Fig. 2!, provided the physi-
cal bases for the molecular models are not violated. These re
suggest that the orthotropy of the continuum model using the
model that has previously been seen to match the orthotropic

Fig. 2 Simulations of uniaxial tension along the x 1-axis using
the freely jointed chain „FJC… model „represented by lines … or
the wormlike chain „WLC… model „symbols … in the orthotropic
constitutive model. The locking stretch was set to be lLÄ1.5,
1.7, or 1.9. Parameters are given in Table 1.

Table 1 Parameters used to generate the curves in Fig. 2. For
all simulations bÄ1 and BÄ0.1 MPa.

Wormlike Chain „WLC … Freely Jointed Chain „FJC…

lL a L n~/m3! a N n~/m3!

1.9 2.5 2.375 4•1021 2.5 2.375 5•1022

1.7 2.5 2.125 4•1021 2.5 2.125 3•1023

1.5 2.83 2.125 4•1021 2.5 1.875 3.5•1023
Transactions of the ASME
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a different chain model such as the WLC since the orthotrop
largely attributable to the unit cell rather than the constitu
chains; however, the nonlinear nature of the resulting fits~i.e., the
degree of locking! will be altered due to differences between t
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